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Foreword

When Tim Berners-Lee first proposed the Web in March 1989 at CERN, he set in motion
a social revolution of creativity and opportunity that has since swept the world, changing
how our society works, how we interact, and how we perceive our role as individuals
within our society.

But he also set in motion an equally impressive technological revolution in how engi‐
neers think about and build software and hardware systems for the Web. The notion of
a web server has changed from a standalone computer sitting in a box to a completely
virtualized part of a global cloud infrastructure in which computation moves where it
is needed at a moment’s notice. Similarly, web clients have changed from the traditional
desktop PC with a browser to a myriad of devices that sense and interact with the physical
world and connect with other devices through web servers sitting in the cloud.

If we think about the changes that the Web has undergone, what makes them so breath‐
taking is not merely that they’ve happened at a dizzying pace, but also that they’ve
happened without central control or coordination. In a word, it is evolution in action.
New ideas and solutions are constantly introduced to accommodate new demands.
These ideas compete with old ideas; sometimes they win and take hold, and other times
they lose and fall by the wayside.

Evolution is as integral a piece of the Web as it is of nature. And just as in nature,
individual components that are better suited to accommodate change have a greater
chance of staying relevant and thriving over time.

In addition to the changes in what constitutes web servers and web clients, a sea change
is taking place in how they interact with each other. Web servers used to serve HTML
that was rendered by clients as web pages. Similarly, web clients would submit HTML
forms to the server for processing, be it to process a pizza order, insert a blog entry, or
update an issue in a bug tracking system.

This model really only exercised a fraction of what HTTP allows you to do by focusing
on the use of HTTP GET and POST methods. However, from day one HTTP has defined
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a much broader application model for interacting with and manipulating data in general.
For example, in addition to the classic GET and POST methods, it defines methods such
as PUT, DELETE, and PATCH that allow for programmatic manipulation of and interaction
with resources.

This is where web APIs come in: they enable web servers to expose the full HTTP
application model, allowing programmatic access to resources so that clients can in‐
teract with and manipulate data in a uniform manner across a wide variety of scenarios.

There are two key drivers for the shift toward web APIs: HTML5 and mobile applica‐
tions. Both leverage the computational powers of the client platform to provide engaging
and fluid experiences while retrieving and manipulating data through backend web
APIs. In short, web servers are changing from serving only static HTML to also pro‐
viding web APIs that allow clients to interact programmatically using the full power of
the HTTP application model. How to actually build such web APIs is where this book
comes in. In short, it is for anyone who is building web APIs targeting HTML5 appli‐
cations as well as mobile applications. It provides not only a great introduction to web
APIs but also a practical set of guidelines for how to build them using ASP.NET Web
API. In addition, it goes into great detail describing how ASP.NET Web API works and
also serves as a reference for how it can be extended via HTTP message handlers, for‐
matters, and more.

But the book goes beyond just showing the code or explaining the framework. It also
introduces you to powerful techniques such as test-driven development (TDD) and
behavior-driven development (BDD) for writing applications that can be tested and
verified to function as expected.

What makes this book stand out, however, is that it doesn’t just provide a “point in time”
set of guidelines for how to build a web API. It takes you on a journey through how to
design a web API that can evolve with changing demands and constraints. This idea of
addressing evolvability goes to the very heart of how the Web works.

Building web APIs that can function effectively in this environment is not a straight‐
forward proposition. One thing that is clear is the importance of accepting from day
one that any web API will have to change, and that no one is in control of all parts at
any given time. In other words, you can’t just design a new version of your system and
scrap the old one without losing existing users or causing friction—you have to move
the system forward bit by bit while at the same time allowing both older clients to
continue to function and newer clients to take advantage of the new features.

However, building software that is flexible and able to evolve remains a challenge. This
book provides a great overview of how to build modern web applications that can change
and evolve as demands do. It does so by mixing web APIs with hypermedia, which is a
new and exciting direction for web applications.
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The notion of hypermedia is both new and old. We are all used to browsing web pages,
looking for information and diving into an aspect by clicking a link that takes us to a
new page with more information and yet more links. As the information changes or
evolves, new links can get added or existing ones modified to reflect that. The new links
can prompt you to explore new information and dive into additional areas.

When you start merging web APIs with hypermedia, you get a powerful model for
enabling applications to change and adapt in a similar way, how they interact with the
server. Instead of having a fixed flow of actions baked into clients, they can now modify
their actions based on the links made available in order to evolve—in short, they are
able to adapt to change.

What makes this book relevant is that it provides a comprehensive overview of the state-
of-the-art methods for designing web APIs that can adapt to the changing demands of
providers and consumers. By introducing concepts such as hypermedia-driven web
APIs with TDD, it provides an excellent starting point for anybody building web APIs.

As part of the team that built ASP.NET Web API, I have had the pleasure to work with
the authors of this book. The group stands out, not just because of their collective ex‐
perience in building frameworks, but also thanks to their vast real-world experience in
building practical systems based on HTTP concepts. They have all provided many val‐
uable inputs and suggestions that have contributed to ASP.NET Web API becoming a
popular framework for building modern web applications.

In particular, I have enjoyed working with Glenn Block, who joined the project early
on and really drove the emphasis on community engagement as well as the importance
of dependency injection, TDD, and hypermedia. Without his contributions, ASP.NET
Web API would not be where it is today.

If you are building or thinking about building web APIs, you will enjoy this book not
only as a learning tool but also as a practical guide for how to build modern web appli‐
cations based on ASP.NET Web API. It offers a wealth of information and guidelines
for how to design with evolvability in mind by looking at complex issues in new and
innovative ways. I, for one, am looking forward to seeing how this will evolve in the
future!

—Henrick Frystyk Nielsen
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Preface

Why Should You Read This Book?
Web API development is exploding. Companies are investing in droves to build systems
that can be consumed by a range of clients over the Web. Think of your favorite website,
and most likely there’s an API to talk to it. Creating an API that can talk over HTTP is
very easy. The challenge comes after you deploy the first version. It turns out that the
creators of HTTP thought a lot about this and how to design for evolvability. Both media
types and hypermedia were central to the design for this reason. But many API authors
don’t think or take advantage of this, deploying APIs that introduce a lot of coupling in
the client and that don’t utilize HTTP as they should. This makes it very difficult to
evolve the API without breaking the client. Why does this happen? Often because this
is the easiest and most intuitive path from an engineering standpoint to get things done.
However, it is counterintuitive in the long term and against the fundamental principles
with which the Web itself was designed.

This is a book for people who want to design APIs that can adapt to change over time.
Change is inevitable: the API you build today will evolve. Thus, the question is not if,
it is how. The decisions (or nondecisions) you make early on can drastically influence
the answer:

• Will adding a new feature break your existing clients, forcing them to be upgraded
and redeployed, or can your existing clients continue to operate?

• How will you secure your API? Will you be able to leverage newer security
protocols?

• Will your API be able to scale to meet the demands of your users, or will you have
to re-architect?

• Will you be able to support newer clients and devices as they appear?
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These are the kinds of questions that you can design around. At first glance you might
think this sounds like Big Design Up Front or a waterfall approach, but that is not at all
the case. This is not about designing the entire system before it is built; it is not a recipe
for analysis paralysis. There are definitely decisions that you must make up front, but
they are higher level and relate to the overall design. They do not require you to un‐
derstand or predict every aspect of the system. Rather, these decisions lay a foundation
that can evolve in an iterative fashion. As you then build the system out, there are various
approaches you can take that build on top of that foundation in order to continually
reinforce your goal.

This is a book of application more than theory. Our desire is for you to walk away with
the tools to be able to build a real, evolvable system. To get you there, we’ll start by
covering some essentials of the Web and web API development. Then we’ll take you
through the creation of a new API using ASP.NET Web API, from its design through
implementation. The implementation will cover important topics like how to imple‐
ment hypermedia with ASP.NET Web API and how to perform content negotiation.
We’ll show you how to actually evolve it once it is deployed. We’ll also show how you
can incorporate established practices like acceptance testing and test-driven develop‐
ment and techniques such as inversion of control to achieve a more maintainable code
base. Finally, we’ll take you through the internals of Web API to give you a deep un‐
derstanding that will help you better leverage it for building evolvable systems.

What Do You Need to Know to Follow Along?
To get the most out of this book in its entirety, you should be a developer who is expe‐
rienced with developing C# applications with .NET version 3.5 or greater. You should
ideally also have some experience building web APIs. Which framework you have used
to develop those APIs is not important; what is important is having familiarity with the
concepts. It is not necessary to have any prior experience with ASP.NET Web API or
ASP.NET, though familiarity with ASP.NET MVC will definitely help.

If you are not a .NET developer, then there is something here for you. One specific goal
in authoring this book was for a significant portion of the content to be centered on API
design and development in general and not tied to ASP.NET Web API. For that reason,
we think you’ll find that regardless of your development stack (Java, Ruby, PHP, Node,
etc.), much of the content in the first two sections of the book will be valuable to you in
learning API development.
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The Hitchhiker’s Guide to Navigating This Book
Before you begin your journey, here is a guide to help you navigate the book’s contents:

• Part I is focused on helping you get oriented around web API development. It covers
the foundations of the Web/HTTP and API development, and introduces you to
ASP.NET Web API. If you are new to web API development/ASP.NET Web API,
this is a great place to start. If you’ve been using ASP.NET Web API (or another
Web API stack) but would like to learn more about how to take advantage of HTTP,
this is also a good starting point.

• Part II centers on web API development in the real world. It takes you through a
real-world app from design through implementation, covering the client and server.
If you are comfortable with web API development and in a hurry to start building
an app, jump right to the second section.

• Part III is a fairly comprehensive reference on exactly how the different parts of
ASP.NET Web API work under the hood. It also covers more advanced topics like
security and testability. If you are already building an app with ASP.NET Web API
and trying to figure out how to best utilize Web API itself, start here.

Next we’ll give a quick overview of what you’ll find in each chapter.

Part I, Fundamentals
Chapter 1, The Internet, the World Wide Web, and HTTP

This chapter starts with a bit of history about the World Wide Web and HTTP. It
then gives you a 5,000-foot view of HTTP. You can think of it as a “Dummies’ Guide”
to HTTP, giving you the essentials you need to know, without your having to read
the entire spec.

Chapter 2, Web APIs
This chapter begins by giving a historical context on web API development in gen‐
eral. The remainder of the chapter discusses essentials of API development, starting
with core concepts and then diving into different styles and approaches for de‐
signing APIs.

Chapter 3, ASP.NET Web API 101
This chapter discusses the fundamental drivers behind ASP.NET Web API as a
framework. It will then introduce you to the basics of ASP.NET Web API as well as
the .NET HTTP programming model and client.
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Chapter 4, Processing Architecture
This chapter will describe at a high level the lifecycle of a request as it travels through
ASP.NET Web API. You’ll learn about each of the different actors who have a part
in processing different aspects of the HTTP request and response.

Part II, Real-World API Development
Chapter 5, The Application and Chapter 6, Media Type Selection and Design

These chapters discuss the overall design for the Issue Tracker application. They
cover several important design-related topics including media type selection and
design, as well as hypermedia.

Chapter 7, Building the API and Chapter 8, Improving the API
These chapters will show how to actually implement and enhance the hypermedia-
driven Issue Tracker API using ASP.NET Web API. They introduce you to how to
develop the API using a behavior-driven development style.

Chapter 9, Building the Client
This chapter focuses entirely on how to build out a hypermedia client, which can
consume the Issue Tracker API.

Part III, Web API Nuts and Bolts
Chapter 10, The HTTP Programming Model

This chapter will cover in depth the new .NET HTTP programming model on which
ASP.NET Web API rests entirely.

Chapter 11, Hosting
This chapter covers all the different hosting models that exist for ASP.NET Web
API, including self-host, IIS, and the new OWIN model.

Chapter 12, Controllers and Routing
In this chapter you’ll take a deep dive into how Web API routing works and how
controllers operate.

Chapter 13, Formatters and Model Binding and Chapter 14, HttpClient
These chapters cover everything you need to know about model binding and about
using the new HTTP client.

Chapter 15, Security and Chapter 16, The OAuth 2.0 Authorization Framework
These chapters cover the overall security model in ASP.NET Web API and then talk
in detail about how to implement OAuth in your API.

Chapter 17, Testability
This chapter will cover how to develop in ASP.NET Web API in a test-driven man‐
ner.
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Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/webapibook. A forum for discussion of the book is located at http://
bit.ly/web-api-forum.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
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For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Designing Evolvable Web APIs with
ASP.NET by Glenn Block, Pablo Cibraro, Pedro Felix, Howard Dierking, and Darrel
Miller (O’Reilly). Copyright 2012 Glenn Block, Pablo Cibraro, Pedro Felix, Howard
Dierking, and Darrel Miller, 978-1-449-33771-1.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

xxii | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/


How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/designing-api.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

The Internet, the World Wide Web,
and HTTP

To harness the Web, you need to understand its foundations and design.

We start our journey toward Web APIs at the beginning. In the late 1960s the Advanced
Research Projects Agency Network (ARPANET), a series of network-based systems
connected by the TCP/IP protocol, was created by the Defense Advanced Research
Projects Agenecy (DARPA). Initially, it was designed for universities and research lab‐
oratories in the US to share data. (see Figure 1-1).

ARPANET continued to evolve and ultimately led in 1982 to the creation of a global set
of interconnected networks known as the Internet. The Internet was built on top of the
Internet protocol suite (also known as TCP/IP), which is a collection of communication
protocols. Whereas ARPANET was a fairly closed system, the Internet was designed to
be a globally open system connecting private and public agencies, organizations, indi‐
viduals, and insitutions.

In 1989, Tim Berners-Lee, a scientist at CERN, invented the World Wide Web, a new
system for accessing linked documents via the Internet with a web browser. Navigating
the documents of the Web (which were predominantly written in HTML) required a
special application protocol, the Hypertext Transfer Protocol (HTTP). This protocol is
at the center of what drives websites and Web APIs.
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Figure 1-1. ARPANET (image from Wikimedia Commons)

In this chapter we’ll dive into the fundamentals of the web architecture and explore
HTTP. This will form a foundation that will assist us as we move forward into actually
designing Web APIs.

Web Architecture
The Web is built around three core concepts: resources, URIs, and representations, as
shown in Figure 1-2.

A resource has a URI that identifies it and that HTTP clients will use to find it. A
representation is data that is returned from that resource. Also related and significant
is the media type, which defines the format of that data.
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Figure 1-2. Web core concepts

Resource
A resource is anything that has a URI. The resource itself is a conceptual mapping to
one or more entities. In the early years of the Web it was very common for this entity
to be a file such as a document or web page. However, a resource is not limited to being
file oriented. A resource can be a service that interfaces with anything such as a catalog,
a device (e.g., a printer), a wireless garage door opener, or an internal system like a CRM
or a procurement system. A resource can also be a streaming medium such as a video
or an audio stream.

Is a Resource Bound to an Entity or a Database?
A common misnomer today with Web APIs is that each resource must map to an entity
or business object backed by a database. Often, this will come up in a design conversation
where someone might say, “We can’t have that resource because it will require us to
create a table in the database and we have no real need for a table.” The previous defi‐
nition described a mapping to one or more entities; this is an entity in the general sense
of the word (i.e., it could be anything), not a business object. An application may be
designed such that the resources exposed always map to business entities or tables, and
in such a system the previous statement would be true. However, that is a constraint
imposed by an application or framework, not the Web.
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When you are building Web APIs, there are many cases where the entity/resource con‐
straint is problematic. For example, an order processing resource actually orchestrates
different systems to process an order. In this case, the resource implementation invokes
various parts of the system that may themselves store state in a database. It may even
store some of its own state, or not. The point is there is not a direct database corre‐
spondence for that resource. Also, there is no requirement that the orchestrated com‐
ponents use a database either (though in this case they do).

Keep this distinction in mind as you go forward in your Web API design. It will help
you to really harness the power of the Web within you systems.

URI
As was mentioned earlier, each resource is addressable through a unique URI. You can
think of a URI as a primary key for a resource. Examples of URIs are http://fabri‐
kam.com/orders/100, http://ftp.fabrikam.com, mailto:John.Doe@example.com, telnet://
192.168.1.100, and urn:isbn:978-1-449-33771-1. A URI can correspond only to a single
resource, though multiple URIs can point to the same resource. Each URI is of the form
scheme:hierarchical part[?query][#fragment] with the query string and fragment being
optional. The hierachical part further consists of an optional authority and hierachical
path.

URIs are divided into two categories, URLs and URNs. A URL (Universal Resource
Locator) is an identifier that also refers to the means of accessing the resource, while a
URN (Universal Resource Name) is simply a unique identifier for a resource. Each of
the preceding example URIs is also a URL except the last one, which is a URN for this
book. It contains no information on how to access the resource but does identify it. In
practice, however, the majority of URIs you will likely see will be URLs, and for this
reason the two are often used synonymously.
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Query String or Not?
One common area of debate is whether or not you should use query strings at all. The
reasoning for this has to do with caches. Some caches will automatically ignore any URI
that has a query string in it. This can have a significant impact on scale, as it means all
requests are directed to the origin server. Thus, some folks prefer not to use query strings
and to put the information into the URI path. Google recommends[http://bit.ly/
optimize-cache] not using query strings for static resources that are cachable for the
same reason.

Cool URIs
A cool URI is a URI that is simple, easy to remember (like http://www.example.com/
people/alice), and doesn’t change. The reason for the URI not to change is so it does not
break existing systems that have linked to the URI. So, if your resources are designed
with the idea that clients maintain bookmarks to them, you should consider using a
cool URI. Cool URIs work really well in particular for web pages to which other sites
commonly link, or that users often store in their browser favorites. It is not required
that URIs be cool. As you’ll see throughout the book, there are benefits to designing
APIs without exposing many cool URIs.

Representation
A representation is a snapshot of a resource’s state at a point in time. Whenever an HTTP
client requests a resource, it is the representation that is returned, not the resource itself.
From one request to the next, the resource state can change dramatically, thus the rep‐
resentation that is returned can be very different. For example, imagine an API for
developer articles that exposes the top article via the URI http://devarticles.com/articles/
top. Instead of returning a link to the content, the API returns a redirect to the actual
article. Over time, as the top article changes, the representation (via the redirect) changes
accordingly. The resource, however, is not the article in this case; it’s the logic running
on the server that retrieves the top article from the database and returns the redirect. It
is important to note that each resource can have one or more representations, as you’ll
learn about in “Content Negotiation” on page 17.

Media Type
Each representation has a specific format known as a media type. A media type is a
format for passing information across the Internet between clients and servers. It is
indicated with a two-part identifier like text/html. Media types serve different pur‐
poses. Some are extremely general purpose, like application/json (which is a collec‐
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tion of values or key values) or text/html (which is primarily for documents rendered
in a browser). Other media types have more constrained semantics like application/
atom+xml and application/collection+json, which are designed specifically for
managing feeds and lists. Then there is image/png, which is for PNG images. Media
types can also be highly domain specific, like text/vcard, which is used for electroni‐
cally sharing business card and contact information. For a list of some common media
types you may encounter, see Appendix A.

The media type itself actually comprises two parts. The first part (before the slash) is
the top-level media type. It describes general type information and common handling
rules. Common top-level types are application, image, text, video, and multipart.
The second part is the subtype, which describes a very specific data format. For example,
in image/png and image/gif, the top-level type tells a client this is an image, while the
subtypes png and gif specify what type of image it is and how it should be handled. It
is also common for the subtype to have different variants that share common semantics
but are different formats. As an example, HAL (Hypertext Application Language) has
JSON (application/hal+json) and XML (application/hal+xml) variants. hal
+json means it’s HAL using a JSON wire format, while hal+xml means the XML wire
format.

The Origin of Media Types
The earliest roots of media types are with ARPANET. Initially, ARPANET was a network
of machines that communicated via simple text messages. As the system grew, the need
for richer communication arose. Thus, a standard format was codified for those mes‐
sages to allow them to contain metadata that related to processing. Over time and with
the rise of email, this standard evolved into MIME (the Multipurpose Internet Mail
Extensions). One of the goals of MIME was to support nontextual payloads, thus the
media type was born as a means to describe the body of a MIME entity. As the Internet
flourished, it became necessary to pass similar rich bodies of information across the
Web without being tied to email. Thus, media types started being used to also describe
the body of HTTP requests and responses, which is how they became relevant for Web
APIs.

Media type registration
Media types are conventionally registered in a central registry managed by IANA, the
Internet Assigned Numbers Authority. The registry itself contains a list of media types
and links to their associated specifications. The registry is categorized by top-level media
types with each top-level section containing a list of specific media types.

Application developers who want to design clients or servers that understand standard
media types refer to the registry for the specifications. For example, if you want to build
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a client that understands image/png, you can navigate to the “image” section of the
IANA media types pages and find “png” to get the image/png spec, as shown in
Figure 1-3.

Figure 1-3. IANA registry for image

Why do we need all these different media types? The reason is because each type has
either specific benefits or clients to which it is tailored. HTML is great for laying out
documents such as a web page, but not necessarily the best for transferring data. JSON
is great for transferring data, but it is a horribly inefficient medium for representing
images. PNG is a great image format, but not ideal for scalable vector graphics; for that,
we have SVG. ATOM, HAL, and Collection+JSON express richer application semantics
than raw XML or JSON, but they are more constrained.

Up until this point, you’ve seen the key components of the web architecture. In the next
section we will dive into HTTP—the glue that brings everything together.
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HTTP
Now that we have covered the high-level web architecture, our next stop is HTTP. As
HTTP is very comprehensive, we will not attempt to cover everything. Rather, we will
focus on the major concepts—in particular, those that relate to building Web APIs. If
you are new to HTTP, it should give you a good lay of the land. If you are not, you might
pick up some things you didn’t know, but it’s also OK to skip it.

HTTP is the application-level protocol for information systems that powers the Web.
HTTP was originally authored by three computer scientists: Tim Berners-Lee, Roy
Fielding, and Henrik Frystyk Nielsen. It defines a uniform interface for clients and
servers to transfer information across a network in a manner that is agnostic to imple‐
mentation details. HTTP is designed for dynamically changing systems that can tolerate
some degree of latency and some degree of staleness. This design allows intermediaries
like proxy servers to intercede in communication, providing various benefits like cach‐
ing, compression, and routing. These qualities of HTTP make it ideal for the World
Wide Web, as it is a massive and dynamically changing and evolving network topology
with inherent latency. It has also stood the test of time, powering the World Wide Web
since its introduction in 1996.

Moving Beyond HTTP 1.1
HTTP is not standing still: it is actively evolving both in how we understand it and how
we use it. There have been many misconceptions around the HTTP spec RFC 2616 due
to ambiguities, or in some cases due to things deemed incorrect. The IETF (Internet
Engineering Task Force) formed a working body known as httpbis that has created a
set of drafts whose sole purpose is to clarify these misconceptions by completely re‐
placing RFC 2616. Additionally, the group has been charged with creating the HTTP
2.0 spec. HTTP 2.0 also does not affect any of the public HTTP surface area; rather, it
is a set of optimizations to the underlying transport, including adoption of the new
SPDY protocol. Because httpbis exists as a replacement for the HTTP spec and provides
an evolved understanding of HTTP, we’ll use that as the basis for the remainder of this
section.

HTTP Message Exchange
HTTP-based systems exchange messages in a stateless manner using a request/response
pattern. We’ll give you a simplified overview of the exchange. First, an HTTP client
generates an HTTP request, as shown in Figure 1-4.
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Figure 1-4. HTTP request

That request is a message that includes an HTTP version, a URI of a resource that will
be accessed, request headers, an HTTP method (like GET), and an optional entity body
(content). The request is then sent to an origin server where the resource presides. The
server looks at the URI and HTTP method to decide if it can handle the message. If it
can, it looks at the request headers that contain control information such as describing
the content. The server then processes the message based on that information.

After the server has processed the message, an HTTP response, generally containing a
representation of the resource (as shown in Figure 1-5), is generated.
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Figure 1-5. HTTP response

The response contains the HTTP version, response headers, an optional entity body
(containing the representation), a status code, and a description. Similar to the server
that received the message, the client will inspect the response headers using its control
information to process the message and its content.

Intermediaries
Though accurate, the preceding description of HTTP message exchange leaves out an
important piece: intermediaries). HTTP is a layered architecture in which each com‐
ponent/server has separation of concerns from others in the sytem; it is not required
for an HTTP client to “see” the origin server. As the request travels along toward the
origin server, it will encounter intermediaries, as shown in Figure 1-6, which are agents
or components that inspect an HTTP request or response and may modify or replace
it. An intermediary can immediately return a response, invoke some sort of process like
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logging the details, or just let it flow through. Intermediaries are beneficial in that they
can improve or enhance communication. For example, a cache can reduce the response
time by returning a cached result received from an origin server.

Figure 1-6. HTTP intermediaries

Notice that intermediaries can exist anywhere the request travels between the client and
origin server; location does not matter. They can be running on the same machine as
the client or origin server or be a dedicated public server on the Internet. They can be
built in, such as the browser cache on Windows, or add-ons commonly known as
middleware. ASP.NET Web API supports several pieces of middleware that can be used
on the client or server, such as handlers and filters, which you will learn about in Chap‐
ters 4 and 10.

Types of Intermediaries
There are three types of intermediaries that participate in the HTTP message exchange
and are visible to clients.

• A proxy is an agent that handles making HTTP requests and receiving responses
on behalf of the client. The client’s use of the proxy is deliberate, and it will be
configured to use it. It is common, for example, for many organizations to have an
internal proxy that users must go through in order to make requests to the Internet.
A proxy that modifies requests or responses in a meaningful way is known as a
transforming proxy. A proxy that does not modify messages is known as a non‐
transforming proxy.
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• A gateway receives inbound HTTP messages and translates them to the server’s
underlying protocol, which may or may not be HTTP. The gateway also takes out‐
bound messages and translates them to HTTP. A gateway can act on behalf of the
origin server.

• A tunnel creates a private channel between two connections without modifying any
of the messages. An example of a tunnel is when two clients communicate via
HTTPS through a firewall.

Is a CDN an Intermediary?
Another common mechanism for caching on the Internet is a content delivery net‐
work (CDN), a distributed set of machines that cache and return static content. There
are many popular CDN offerings, such as Akamai, that companies use to cache their
content. So is a CDN an intermediary? The answer is that it depends on how the request
is passing to the CDN. If the client makes a direct request to it, then it is acting as an
origin server. Some CDNs, however, can also act as a gateway, where the client does not
see the CDN, but it actually acts on behalf of the origin server as a cache and returns
the content.

HTTP Methods
HTTP provides a standard set of methods that form the interface for a resource. Since
the original HTTP spec was published, the PATCH method has also been approved. As
shown earlier in Figure 1-4, the method appears as part of the request itself. Next is a
description of the common methods API authors implement.
GET

Retrieves information from a resource. If the resource is returned, the server should
return a status code 200 (OK).

HEAD

Identical to a GET, except it returns headers and not the body.

POST

Requests that the server accept the enclosed entity to be processed by the target
resource. As part of the processing, the server may create a new resource, though
it is not obliged to. If it does create a resource, it should return a 201 (Created) or
202 (Accepted) code and return a location header telling the client where it can
find the new resource. If it does not create a resource, it should return a 200 (OK)
or a 204 (No Content) code. In practice, POST can handle just about any kind of
processing and is not constrained.
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PUT

Requests that the server replace the state of the target resource at the specified URI
with the enclosed entity. If a resource exists for the current representation, it should
return a 200 (OK) or a 204 (No Content) code. However, if the resource does not
exist, the server can create it. If it does, it should return a 201 (Created) code. The
main difference between POST and PUT is that POST expects the data that is sent to
be processed, while PUT expects the data to be replaced or stored.

DELETE

Requests that the server remove the entity located at the specified URI. If the re‐
source is immediately removed, the server should return a 200 code. If it is pending,
it should return a 202 (Accepted) or a 204 (No Content)..

OPTIONS

Requests that the server return information about its capabilities. Most commonly,
it returns an Allow header specifying which HTTP methods are supported, though
the spec leaves it completely open-ended. For example, it is entirely feasible to list
which media types the server supports. OPTIONS can also return a body, supplying
further information that cannot be represented in the headers.

PATCH

Requests that the server do a partial update of the entity at the specified URI. The
content of the patch should have enough information that the server can use to
apply the update. If the resource exists, the server can be updated and should return
a 200 (OK) or a 204 (No Content) code. As with PUT, if the resource does not exist,
the server can create it. If it does, it should return a code of 201 (Created). A
resource that supports PATCH can advertise it in the Allow header of an OPTIONS
response. The Accept-Patch header also allows the server to indicate an acceptable
list of media types the client can use for sending a PATCH. The spec implies that the
media type should carry the semantics to communicate to the server the partial
update information. json-patch is a proposed media type in draft that provides a
structure for expressing operations within a patch.

TRACE

Requests that the server return the request it received. The server will return the
entire request message in the body with a content-type of message/http. This is
useful for diagnostics, as clients can see which proxies the request passed through
and how the request may have been modified by intermediaries.

Conditional requests
One of the additional features of HTTP is that it allows clients to make conditional
requests. This type of request requires the client to send special headers that provide
the server with information it needs to process the request. The headers include If-
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Match, If-NoneMatch, and If-ModifiedSince. Each of these headers will be described
in further detail in Table B-2 in Appendix B.

• A conditional GET is when a client sends headers that the server can use to determine
if the client’s cached representation is still valid. If it is, the server returns a 304 (Not
Modified) code rather than the representation. A conditional GET reduces the net‐
work traffic (as the response is much smaller), and also reduces the server workload.

• A conditional PUT is when a client sends headers that the server can use to determine
if the client’s cached representation is still valid. If it is, the server returns a 409
(Preconditions Failed). A conditional PUT is used for concurrency. It allows a
client to determine at the time of doing the PUT whether another user changed the
data.

Method properties
HTTP methods can have the following additional properties:

• A safe method is a method that does not cause any side effects from the user when
the request is made. This does not mean that there are no side effects at all, but it
means that the user can safely make requests using the method without worrying
about changing the state of the system.

• An idempotent method is a method in which making one request to the resource
has the same effect as requesting it multiple times. All safe methods are by definition
idempotent; however, there are methods that are not safe and are still idempotent.
As with a safe method, there is no guarantee that a request with an idempotent
method won’t result in any side effects on the server, but the user does not have to
be concerned.

• A cachable method is a method that can possibly receive a cached response for a
previous request from an intermediary cache.

Table 1-1 lists the HTTP methods and whether they are safe or idempotent.

Table 1-1. HTTP methods
Method Safe Idempotent Cachable

GET Yes Yes Yes

HEAD Yes Yes Yes

POST No No No

PUT No Yes No

DELETE No Yes No

OPTIONS Yes Yes No
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Method Safe Idempotent Cachable

PATCH No Yes No

TRACE Yes Yes No

Of the methods listed, the most common set used by API builders today are GET, PUT,
POST, DELETE, and HEAD. PATCH, though new, is also becoming very common.

There are several benefits to having a standard set of HTTP methods:

• Any HTTP client can interact with an HTTP resource that is following the rules.
Methods like OPTIONS provide discoverability for the client so it can learn how those
interactions will take place.

• Servers can optimize. Proxy servers and web servers can provide optimizations
based on the chosen method. For example, cache proxies know that GET requests
can be cached; thus, if you do a GET, the proxy may be able to return a cached
representation rather than having the request travel all the way to the server.

Headers
HTTP messages contain header fields that provide information to clients and servers,
which they should use to process the request. There are four types of headers: message,
request, response, and representation.
Message headers

Apply to both request and response messages and relate to the message itself rather
than the entity body. They include:

• Headers related to intermediaries, including Cache-Control, Pragma, and Via
• Headers related to the message, including Transfer-Encoding and Trailer
• Headers related to the request, including Connection, Upgrade, and Date

Request headers
Apply generally to the request message and not to the entity body, with the exception
of the Range header. They include:

• Headers about the request, including Host, Expect, and Range
• Headers for authentication credentials, including User-Agent and From
• Headers for content negotiation, including Accept, Accept-Language, and
Accept-Encoding

• Headers for conditional requests, including If-Match, If-None-Match, and
If-Modified-Since
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Response headers
Apply to the response message and not the entity body. They include:

• Headers for providing information about the target resource, including Al
low and Server

• Headers providing additional control data, such as Age and Location
• Headers related to the selected representation, including ETag, Last-

Modified, and Vary
• Headers related to authentication challenges, including Proxy-Authenticate

and WWW-Authenticate

Representation headers
Apply generally to the request or response entity body (content). They include:

• Headers about the entity body itself including Content-Type, Content-
Length, Content-Location, and Content-Encoding

• Headers related to caching of the entity body, including Expires

For a comprehensive list and description of the standard headers in the HTTP specifi‐
cation, see Appendix B.

The HTTP specification continues to be extended. New headers can be proposed and
approved by organizations like the IETF (Internet Engineering Task Force) or the W3C
(World Wide Web Consortium) as extensions of the HTTP protocol. Two such exam‐
ples, which are covered in later chapters of the book, are RFC 5861, which introduces
new caching headers, and the CORS specification, which introduces new headers for
cross origin access.

HTTP Status Codes
HTTP responses always return status codes and a description of whether the request
succeeded; it is the responsibility of an origin server to always return both pieces of
information. Both inform the client whether or not the request was accepted or failed
and suggest possible next actions. The description is human-readable text describing
the status code. Status codes range from 4xx to 5xx. Table 1-2 indicates the different
categories of status codes and the associated references in httpbis.

Table 1-2. HTTP status codes
Range Description Reference

1xx The request has been received and processing is
continuing.

http://tools.ietf.org/html/draft-ietf-httpbis-p2-
semantics-21#section-7.2

2xx The request has been accepted, received, and
understood.

http://tools.ietf.org/html/draft-ietf-httpbis-p2-
semantics-21#section-7.3
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Range Description Reference

3xx Further action is required to complete the request. http://tools.ietf.org/html/draft-ietf-httpbis-p2-
semantics-21#section-7.4

4xx The request is invalid and cannot be completed. http://tools.ietf.org/html/draft-ietf-httpbis-p2-
semantics-21#section-7.5

5xx The server has failed trying to complete the request. http://tools.ietf.org/html/draft-ietf-httpbis-p2-
semantics-21#section-7.6

Status codes can be directly associated with other headers. In the following snippet, the
server has returned a 201, indicating that a new resource was created. The Location
header indicates to the client the URI of the created resources. Thus, HTTP Clients
should automatically check for the Location in the case of a 201.

HTTP/1.1 201 Created
Cache-Control: no-cache
Pragma: no-cache
Content-Type: application/json; charset=utf-8
Location: http://localhost:8081/api/contacts/6

Content Negotiation
HTTP servers often have multiple ways to represent the same resources. The represen‐
tations can be based on a variety of factors, including different capabilities of the client
or optimizations based on the payload. For example, you saw how the Contact resource
returns a vCard representation tailored to clients such as mail programs. HTTP allows
the client to participate in the selection of the media type by informing the server of its
preferences. This dance of selection between client and server is what is known as
content negotiation, or conneg.

Caching
As we learned in “Method properties” on page 14, some responses are cachable—in
particular, the responses for GET and HEAD requests. The main benefit of caching is to
improve general performance and scale on the Internet. Caching helps clients and origin
servers in the following ways:

• Clients are helped because the number of roundtrips to the server is reduced, and
because the response payload is reduced for many of those roundtrips.

• Servers are helped because intermediaries can return cached representations, thus
reducing the load on the origin server.

An HTTP cache is a storage mechanism that manages adding, retrieving, and removing
responses from the origin server to the cache. Caches will try to handle only requests
that use a cachable method; all other requests (with noncachable methods) will be au‐
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tomatically forwarded to the origin server. The cache will also forward to the origin
server requests that are cacheable, but that are either not present in the cache or expired.

httpbis defines a pretty sophisticated mechanism for caching. Though there are many
finer details, HTTP caching is fundamentally based on two concepts: expiration and
validation.

Expiration
A response has expired or becomes stale if its age in the cache is greater than the max‐
imum age, which is specified via a max-age CacheControl directive in the response. It
will also expire if the current date on the cache server exceeds the expiration date, which
is specified via the response Expires header. If the response has not expired, it is eligible
for the cache to serve it; however, there are other pieces of control data (see “Caching
and negotiated responses” on page 19) coming from the request and the cached response
that may prevent it from being served.

Validation
When a response has expired, the cache must revalidate it. Validation means the cache
will send a conditional GET request (see “Conditional requests” on page 13) to the server
asking if the cached response is still valid. The conditional request will contain a cache
validator—for example, an If-Modified-Since header with the Last-Modified value
of the response and/or an If-None-Match header with the response’s ETag value. If the
origin server determines it is still valid, it will return a body-less response with a status
code of 304 Not Modified, along with an updated expiration date. If the response has
changed, the origin server will return a new response, which will ultimately get served
by the cache and replace the current cached representation.

Serving Stale Responses
HTTP does provide for caches to serve stale responses under certain conditions, such
as if the origin server is unreachable. In these conditions, a cache may still serve stale
responses as long as a Warning header is included in the response to inform the client.
“HTTP Cache-Control Extensions for Stale Content,” by Mark Nottingham, proposes
new Cache-Control directives (see “Cache behaviors” on page 20) to address these con‐
ditions.

The stale-while-revalidate directive allows a cache to serve up stale content while
it is in the process of validating it in order to hide the latency of the validation. The
stale-if-error directive allows the cache to serve up content whenever there is an
error that could be due to the network or the origin server being unavailable. Both
directives inform caches that it is OK to serve stale content if these headers are present,
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while the aforementioned Warning header informs clients that the content they have is
actually stale.

Note that RFC 5861 is marked as informational, meaning it has not been standardized;
thus, all caches may not support these additional directives.

Invalidation
Once a response has been cached, it can also be invalidated. Generally, this will happen
because the cache observes a request with an unsafe method to a resource that it has
previously cached. Because a request was made that modifies the state of the resource,
the cache knows that its representation is invalid. Additionally, the cache should inva‐
lidate the Location and Content-Location responses for the same unsafe request if the
response was not an error.

ETags
An entity-tag, or ETag, is a validator for the currently selected representation at a point
in time. It is represented as a quoted opaque identifier and should not be parsed by
clients. The server can return an ETag (which it also caches) in the response via the ETag
header. A client can save that ETag to use as a validator for a future conditional request,
passing the ETag as the value for an If-Match or If-None-Match header. Note that the
client in this case may be an intermediary cache. The server matches up the ETag in the
request against the existing ETag it has for the requested resource. If the resource has
been modified in the time since the ETag was generated, then the resource’s ETag on
the server will have changed and there will not be a match.

There are two types of ETags:

• A strong ETag is guaranteed to change whenever the server representation changes.
A strong ETag must be unique across all other representations of the same resource
(e.g., 123456789).

• A weak ETag is not guaranteed to be up to date with the resource state. It also does
not have the constraints of being unique across other representations of the same
resource. A weak ETag must be proceeded with W/ (e.g., W/123456789).

Strong ETags are the default and should be preferred for conditional requests.

Caching and negotiated responses

Caches support the ability to serve negotiated responses through the usage of the Vary
header. The Vary header allows the origin server to specify one or more header fields
that it used as part of performing content negotiation. Whenever a request comes in
that matches a representation in the cache that has a Vary header, the values for those
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fields must match in the request in order for that representation to be eligible to be
served.

The following is an example of a response using the Vary header to specify that the
Accept header was used:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Content-Length: 183
Vary: Accept

Cache behaviors

The Cache-Control header gives instructions to caching mechanisms through which
that request/response passes related to its cachability. The instructions can be provided
by either the origin server as part of the response, or the client as part of the request.
The header value is a list of caching directives that specifies things like whether or not
the content is cachable, where it may be stored, what its expiration policy is, and when
it should be revalidated or reloaded from the origin server. For example, the no-
cache directive tells caches they must always revalidate the cached response before
serving it.

The Pragma header can specify a no-cache value that is equivalent to the no-cache
Cache-Control directive.

Following is an example of a response using the Cache-Control header. In this case, it
is specifying the max age for caches as 3,600 seconds (1 hour) from the Last-
Modified date. It also specifies that cache servers must revalidate with the origin server
once the cached representation has expired before returning it again:

HTTP/1.1 200 OK
Cache-Control: must-revalidate, max-age=3600
Content-Type: application/json; charset=utf-8
Last-Modified: Wed, 26 Dec 2012 22:05:15 GMT
Date: Thu, 27 Dec 2012 01:05:15 GMT
Content-Length: 183

For a detailed walkthrough of caching in action, see Appendix D. For more on HTTP
caching in general, see “Things Caches Do,” by Ryan Tomayko, and “How Web Caches
Work,” by Mark Nottingham.

Authentication
HTTP provides an extensible framework for servers that allows them to protect their
resources and allows clients to access them through authentication. Servers can protect
one or more of their resources, with each resource being assigned to a logical partition
known as a realm. Each realm can have its own authentication scheme, or method of
authorization it supports.
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Upon receiving a request for accessing a protected resource, the server will return a
response with a status 401 Unauthorized or a status 403 Forbidden. The response will
also contain a WWW-Authenticate header containing a challenge, indicating that the
client must authenticate to access the resource. The challenge is an extensible token that
describes the authentication scheme and additional authentication parameters. For ex‐
ample, the challenge for accessing a protected contacts resource that specifies the use
of the HTTP basic authentication scheme is Basic realm="contacts".

To explore how this challenge/response mechanism works in more detail, see Appen‐
dix E.

Authentication Schemes
In the previous section we learned about the framework for authentication. RFC 2617
then defines two concrete authentication mechanisms.
Basic

In this scheme, credentials are sent as a Base64-encoded username and password
separated by a colon in clear text. Basic Auth is conventionally combined with TLS
(HTTPS) due to its inherent unsecure nature; thus, its advantage is that it is ex‐
tremely easy to implement and access (including from browser clients), which
makes it an attractive choice for many API authors.

Digest
In Digest, the user’s credentials are sent in clear text. Digest addresses this problem
by using a checksum (MAC) that the client sends, which the server can use to
validate the credentials. However, this scheme has several security and performance
disadvantages and is not often used.

The following is an example of an HTTP Basic challenge response after an attempt to
access a protected resource:

HTTP/1.1 401 Unauthorized
...
WWW-Authenticate: Basic realm="Web API Book"
...

As you can see, the server has returned a 401, including a WWW-Authenticate header
indicating that the client must authenticate using HTTP Basic:

GET /resource HTTP/1.1
...
Authorization: Basic QWxpY2U6VGhlIE1hZ2ljIFdvcmRzIGFyZSBTcXVlYW1pc2ggT3NzaWZyYWdl

The client then sends back the original request, including the Authorization header,
in order to access the protected resource.

HTTP | 21

http://bit.ly/rfc-2617
http://bit.ly/basic-auth
http://bit.ly/digest-access


Additional Authentication Schemes
There are additional authentication schemes that have appeared since RFC 2617, in‐
cluding vendor-specific mechanisms:
AWS Authentication

This scheme, used for authenticating to Amazon Web Services S3, involves the client
concatenating several parts of the request to form a string. The user then uses his
AWS shared secret access key to calculate an HMAC (hash message authentication
code), which is used to sign the request.

Azure Storage
Windows Azure offers several different schemes to access Windows Azure Storage
services, each of which involves using a shared key to sign the request.

Hawk
This new scheme, authored by Eran Hammer, provides a general-purpose shared
key auth mechanism similar to AWS and Azure. The key is also never used directly
in the requests; rather, it is used to calculate a MAC value that is included in the
request. This prevents the key from being intercepted such as in a man-in-the-
middle (MITM) attack.

OAuth 2.0
Using this framework allows a resource owner (the user) to delegate permission to
a client to access a protected resource from a resource server on her behalf. An
authentication server grants the client a limited use access token, which the client
can then use to access the resource. The clear advantage here is that the user’s
credentials are never directly exchanged with the client application attempting to
access the resource.

You’ll learn more about HTTP authentication mechanisms and implementing them
(including OAuth) in Chapters 15 and 16.

Conclusion
In this chapter we’ve taken a broad-brush approach at surveying the HTTP landscape.
The concepts covered were not meant for completeness but rather to help you wade
into the pool of HTTP and give you a basic foundation for your ASP.NET Web API
development. You’ll notice we’ve included further references for each of the items dis‐
cussed. These references will prove invaluable as you actually move forward with your
Web API development, so keep them in your back pocket! On to APIs!
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CHAPTER 2

Web APIs

There’s more to Web APIs than just returning a JSON payload.

In the preceding chapter, we learned about the essential aspects of the Web and HTTP,
the application layer protocol that drives it. In this chapter, we’ll talk about the evolution
of Web APIs, cover various Web API–related concepts, and discuss different styles and
approaches for designing Web APIs.

What Is a Web API?
A Web API is a programmatic interface to a system that is accessed via standard HTTP
methods and headers. A Web API can be accessed by a variety of HTTP clients, including
browsers and mobile devices. Web APIs can also benefit from the web infrastructure
for concerns like caching and concurrency.

What About SOAP Web Services?
SOAP services are not web-friendly. They are not easily consumable from HTTP clients,
such as browsers or tools like curl. A SOAP request has to be properly encoded in a
SOAP message format. The client has to have access to a Web Service Description Lan‐
guage (WSDL) file, which describes the actions available on the service, and also has to
know how to construct the message. This means the semantics of how to interact with
the system are tunneled over HTTP rather than being first class. Additionally, SOAP
web services generally require all interactions to be via HTTP POST; thus, the responses
are also noncachable. Finally, SOAP services do not allow one to access HTTP headers,
which severely limits clients from benefitting from features of HTTP like optimistic
concurrency and content negotiation.
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Origins of Web APIs
In February 2000, Salesforce.com launched a new API that allowed customers to harness
Salesforce capabilities directly within their applications.

Later that same year in November, eBay launched a new API that allowed developers to
build ecommerce applications leveraging eBay’s infrastructure.

What differentiated these APIs from SOAP APIs (the other emerging trend)? These
Web APIs were targeting third-party consumers and designed in an HTTP-friendly way.
The traditional APIs of the time had been mostly designed for system integration and
were SOAP-based. These APIs utilized plain old XML as the message exchange format
and plain old HTTP as the protocol. This allowed them to be used from a very broad
set of clients, including simple web browsers. These were the first of many such Web
APIs to come.

For the next few years after Salesforce and eBay took these first steps, similar APIs started
to appear on the scene. In 2002, Amazon officially introduced Amazon Web Services,
followed by Flickr launching its Flickr API in 2004.

The Web API Revolution Begins
In the summer of 2005, ProgrammableWeb.com launched. Its goal was to be a one-stop
shop for everything API related. It included a directory of public APIs (both SOAP and
non-SOAP) containing 32 APIs, which was considerable growth from 2002. Over the
next few years, however, that number would explode. APIs would run the gamut from
major players such as Facebook, Twitter, Google, LinkedIn, Microsoft, and Amazon to
then-small startups like YouTube and Foursquare. In November 2008, Programmable‐
Web’s directory was tracking 1,000 APIs. Four years later, at the time of this writing, that
number exceeds 7,000. API growth is accelerating, as just about a year ago the number
was 4,000.

In other words, it is clear that Web APIs are here to stay.

Paying Attention to the Web
The earliest Web APIs weren’t necessarily concerned with the underlying web archi‐
tecture and its design constraints. This had ramifications such as the infamous Google
Web Accelerator incident, which resulted in a loss of customer data and content.

In recent years, however, with an exponential rise in third-party API consumers and in
devices, this has changed. Organizations are finding they can no longer afford to ignore
the web architecture in their API design, because doing so has negatively impacted their
ability to scale, to support a growing set of clients, and to evolve their APIs without
breaking existing consumers.
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The remainder of this chapter is a primer on web architecture and HTTP as they relate
to building Web APIs. It will give you a foundation that will allow you to leverage the
power of the Web as you begin to develop your own Web APIs using ASP.NET Web
API.

Guidelines for Web APIs
This section lists some guidelines for differentiating Web APIs from other forms of
APIs. In general, a key differentiator for Web APIs is that they are browser-friendly. In
addition, Web APIs:

• Can be accessed from a range of clients (including browsers at minimum).
• Support standard HTTP methods such as those mentioned in Table 1-1. It is not

required for an API to use all of the methods, but at minimum it should support
GET for retrieval of resources and POST for unsafe operations.

• Support browser-friendly formats. This means that they support formats that are
easy for browsers and any other HTTP client to consume. A browser client can
technically consume a SOAP message using its XML stack, but the format requires
a large amount of SOAP-specific code to do it. Formats like XHTML, JSON, and
Form URL encoding are very easy to consume in a browser.

• Support browser-friendly authentication. This means that a browser client can au‐
thenticate with the server without requiring any special plugins or extensions.

Domain-Specific Media Types
In the previous chapter, we learned about the concept of media types. In addition to the
general-purpose types we discussed, there are also domain-specific media types. These
types carry rich application-specific semantics and are useful in particular for Web API
development where there are rich system interactions rather than simple document
transfer.

vCard is a domain-specific media type that provides a standard way to electronically
describe contact information. It is supported in many popular address book and email
applications like Microsoft Outlook, Gmail, and Apple Mail.

In Figure 2-1, you can see the same contact represented as a vCard.

Guidelines for Web APIs | 25

http://tools.ietf.org/search/rfc6350


Figure 2-1. Contact vCard representation

When an email application sees a vCard it knows right away that this is contact infor‐
mation and how to process it. If the same application were to get raw JSON, it has no
way of knowing what it received until it parses the JSON. This is because the JSON
media type does not define a standard way to say “I am a contact.” The format would
have to be communicated out-of-band through documentation. Assuming that infor‐
mation was communicated, it would be application specific and not likely supported by
other email applications. In the case of the vCard, however, it is a standard that is sup‐
ported by many applications across different operating systems and form factors.

We can mint new media types as applications evolve and new needs emerge by following
the IANA registration process. This provides a distinct advantage because we can in‐
troduce new types and clients to consume them without affecting existing clients. As
we saw in the previous chapter, clients express their media type preferences through
content negotiation.

Media Type Profiles
It makes a lot of sense for media types that are used by many different clients and servers
to be registered with IANA, but what if a media type is not ubiquitous and specific to
an application? Should it be registered with IANA? Some say yes, but others are ex‐
ploring lighter-weight mechanisms, in particular for Web APIs. Media type profiles
allow servers to leverage existing media types (like XML, JSON, etc.) and provide ad‐
ditional information that has the application-specific semantics.
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The profile link relation allows servers to return a profile link in an HTTP response. A
link is an element that contains a minimum of two pieces of information: a rel (or
relation) that describes the link, and a URI. In the case of a profile, the rel will be
profile. It is not necessary for the URI to actually be dereferencable (meaning you can
access the resource), though in many cases it will point to a document.

The challenge with using profiles today is that many media types do not currently sup‐
port a way to express links, so clients would not be expected to recognize the profile
even if it were in the content. For example, JSON is a very popular format used by Web
APIs, but it does not support links.

Fortunately, there is a preestablished link header that can be used in any HTTP response
to pass a profile.

Using the earlier contact example, we can return this header to tell the client this is not
just any old JSON, it’s JSON for working with example.com’s contact management sys‐
tem. If the client opens their browser to the URI of the link, they can get a document
that describes the payload. This document can be in any format, such as the emerging
Application-Level Profile Semantics (ALPS) data format, which is designed specifically
for this purpose.:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Link: <http://example.com/contactmanagement/profile>; rel="profile"
Date: Fri, 21 Dec 2012 06:47:25 GMT
Content-Length: 183

{
  "contactId":1,
  "name":"Glenn Block",
  "address":"1 Microsoft Way",
  "city":"Redmond","State":"WA",
  "zip":"98052",
  "email":"gblock@microsoft.com",
  "twitter":"gblock",
  "self":"/contacts/1"
}

Multiple Representations
A single resource can have multiple representations, each with a different media type.
To illustrate, let’s look at two different representations of the same contact resource. The
first, in Figure 2-2, is a JSON representation and contains information about the contact.
The second, Figure 2-3, is the avatar for the contact. Both are valid representations of
state, but they have different uses.
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Figure 2-2. Contact JSON representation

Figure 2-3. Contact PNG representation

The JSON representation will be parsed and data (such as the contact name, email
address, etc.) will be extracted from the JSON and displayed to the user. The PNG
representation, however, will just display as is; because it is an image, it could also easily
be passed as the URL for an HTML <img> tag or consumed directly by an image viewer.
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As the previous example shows, the advantage of supporting multiple representations
is to allow many different clients with different capabilities to interact with your API.

API Styles
There are many different architectural styles for building Web APIs. By style we mean
an approach for implementing an API over HTTP. A style is a set of common charac‐
teristics and constraints that permeate the design. Each style has trade-offs and benefits
associated with it. The important thing to recognize is that the style is an application of
HTTP; it is not HTTP.

For example, Gothic is a style applied to architecture. You can look at various buildings
and determine which are Gothic because they possess certain qualities, such as ogival
arches, ribbed vaults, and flying buttresses. In the same way, API styles share a set of
qualities that manifest in different APIs. Today we see a number of styles, but they land
in a spectrum with RPC on one side and REST on the other.

The Richardson Maturity Model
The Richardson Maturity Model (RMM) by Leonard Richardson introduces a frame‐
work for classifying APIs into different levels based on how well they take advantage of
web technologies.
Level 0, RPC oriented

A single URI and one HTTP method.

Level 1, Resource oriented
Many URIs, one HTTP method.

Level 2, HTTP verbs
Many URIs, each supporting multiple HTTP methods.

Level 3, Hypermedia
Resources describe their own capabilities and interactions.

The model was designed to classify the existing APIs of the time. It became wildly
popular and is used by many folks in the API community for classifying their APIs
today.

It was not without issue, though. The model was not created to establish a rating scale
to evaluate how RESTful an API is. Unfortunately, many took it for just that and began
to use it as a stick to beat others for not being RESTful enough. This appears to be one
of the reasons why Leonard Richardson himself has stopped promoting it.

Throughout this chapter, you’ll dive more deeply into the different levels of RMM and
see real-world examples. We’ll use the levels to discuss the benefits and trade-offs as‐
sociated with how you design your API.
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RPC (RMM Level 0)
At Level 0, an API uses an RPC (remote procedure call) style. It basically treats HTTP
as a transport protocol for invoking functions running on a remote server. In an RPC
API, the API tunnels its own semantics into the payload, with different message types
generally corresponding to different methods on the remote object and using a single
HTTP method, POST. The SOAP Services, XML-RPC, and POX (plain old XML) APIs
are examples of Level 0.

Consider the example of an order processsing system using POX. The system exposes
a single-order processing service at the URL /orderService. Each client POSTs different
types of messages to that service in order to interact with it.

To create an order, a client sends the following:

POST /orderService HTTP 1.1
Content-Type: application/xml
Content-Length: xx

<createOrderRequest orderNumber = "1000">
</createOrderRequest>

The server then responds, telling the client the order has been created:

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: xx

<createOrderResponse>
Order created
</createOrderResponse>

Notice the status is in the body itself, not via the status code. This is because HTTP is
being used as a transport for a method invocation where all the data is sent in the payload.

To check on the list of active orders, the client sends a getOrders request:

POST /orderService HTTP 1.1
Content-Type: application/xml
Content-Length: xx

<getOrdersRequest status="active"/>
</getOrderRequest>

The server reply contains the list of orders:

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: xx

<getOrdersResponse>
  <orders>
    <order orderNumber = "1000" status="active"/>
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    <order orderNumber = "1200" status="active"/>
  </order>
</getOrdersResponse>

To approve an order, the client sends an approval request:

POST /orderService HTTP 1.1
Content-Type: application/xml
Content-Length: xx

<approveOrderRequest orderNumber = "1000">
</approveOrderRequest>

The server responds, indicating the status of the approval:

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: xx

<approveOrderResponse>
  <error code="100">Order approval failed</error>
  <reason>Missing information</reason>
</approveOrderResponse>

Similar to the status mentioned ealier, here the error code is part of the payload.

As you can see from the preceding examples, in this style the payload describes a set of
operations to be performed and their results. Clients have explicit knowledge of each
of the different message types associated with each “service,” which they use to interact
with it.

You might be asking, why not use another method like PUT? The reason is because in
this approach all requests are sent to a single endpoint (/orderService) regardless of the
operation. POST is the least constrained in its definition, as it is both unsafe and noni‐
dempotent. Each of the other methods, however, has additional constraints, making it
insufficient for all operations.

One benefit of this approach is that it is very easy and simple to implement and aligns
well with the existing development mental model.

Resources (RMM Level 1)
At Level 1, the API is broken out into several resources, with each resource being ac‐
cessed via a single HTTP method, though the method can vary. Unlike Level 0, in this
case the URI represents the operation.

Returning to the preceding order processing example, here is how the requests look for
a Level 0 API. To create an order, the client sends a request to the createOrder API,
passing the order in the payload:
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POST /createOrder HTTP 1.1
Content-Type: application/json
Content-Length: xx

{
  "orderNumber" : "1000"
}

The server then responds with an order that has an active status:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: xx

{
  "orderNumber" : "1000",
  "status" : "active"
}

To retrieve the orders, the client makes a request to listOrders and specifies the filter
in the query string. Notice that for retrieval the client is actually performing a GET request
rather than a POST:

GET /listOrders?status=active

The server then responds with the list of orders:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: xx

{
  [
    {
      "orderNumber : "1000",
      "status" : "active"
    },
    {
      "orderNumber" : "1200",
      "status" : "active"
    }
  ]
}

To approve the order, the client makes a POST request to the approveOrder resource:

POST /approveOrder?orderNumber=1000
...

A common example of an API using this style is Yahoo’s Flickr API. Looking at the
documentation, we see “API Methods.” Looking under galleries, we see the methods
listed in Figure 2-4.
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Figure 2-4. Yahoo Flickr API

There are several different URIs for working with photos. To add a photo, you’d request
the addPhoto API, while to retrieve a photo you can use getPhotos. To update a photo,
you can request the editPhoto or editPhoto APIs.

Notice this style is still very RPC-ish in the sense that each resource corresponds to a
method on a server-side object. However, because it can use additional HTTP methods,
some resources can be accessed via GET, allowing their responses to be cached as in the
earlier listOrders example. This style provides additional evolvability benefits in that
we can easily add new functionality to the system as resources, without having to modify
existing resources, which could break current clients.

HTTP VERBS (RMM Level 2)
In the previous examples, each resource corresponded heavily to the implementation
on the server, relating to one or more methods on server-side objects; thus, those ex‐
amples were very functionality oriented (getOrder). A Level 2 system uses a resource-
oriented approach. The API exposes one or more resources (order), which each support
one or more HTTP methods. These types of APIs offer richer interactions over HTTP,
supporting capabilities like caching and content negotiaion.

In these APIs, it is common to have a delineation between collection resources and item
resources:

• A collection resource corresponds to the collection of child resources (e.g., http://
example.com/orders). To retrieve the collection, a client issues a GET request to this
resource. To add a new item to the collection a client POSTs an item to this resource.

• An item resource corresponds to an individual child resource within a collection
(e.g., http://example.com/orders/1 corresponds to order 1). To update the item re‐
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source, a client sends a PUT or PATCH request. To delete, it uses a DELETE method. It
is also common to allow PUT to create the resource if it does not exist. An item
resource is generally referred to as a subresource, because its URI implies a hierarchy
(i.e., in /orders/1, the 1 is a child).

• Both collection and item resources can have one or more collection and item re‐
sources as children.

Applying the order example to level style, the client now sends the following request to
create an order:

POST /orders
Content-Type: application/json
Content-Length: xx

{
  "orderNumber" : "1000"
}

The server than responsds with a 201 Created status code and a location header indi‐
cating the URI of the newly created resource. The response also includes an ETag header
to enable caching:

HTTP/1.1 201 CREATED
Location: /orders/1000
Content-Type: application/json
Content-Length: xx
ETag: "12345"

{
  "orderNumber" : "1000",
  "status" : "active"
}

To list active orders, the client sends a GET request to the /active subresource un‐
der /orders:

GET /orders/active
Content-Type: application/json
Content-Length: xx

{
  [
    {
      "orderNumber : "1000",
      "status" : "active"
    },
    {
      "orderNumber" : "1200",
      "status" : "active"
    }
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  ]
}

To approve the order, the client sends a PUT request to /order/1000/approval:
PUT /orders/1000/approval

The client then responds, indicating in this case that the order approval has been re‐
jected:

HTTP/1.1 403 Forbidden
Content-Type: application/json
Content-Length: xx

{
  "error": {
    "code" : "100",
      "message" : "Missing information"
  }
}

Looking at the preceding examples, you can see the difference in the way the client
interacts with such an API. It sends requests to one or more resources using the HTTP
methods to convey the intent.

A real-world example of a resource-oriented API is the GitHub API. It exposes root
collection resources for each of the major areas in GitHub, including Orgs, Repositories,
Pull Requests, Issues, and much more. Each collection resource has its own child item
and collection resources. To interact with each resource, you use standard HTTP meth‐
ods.

For example, to list repositories for the current authenticated user, we can send the
following request to the repos resource:

GET http://api.github.com/users/repos/ HTTP/1.1

To create a new repository for the current authenticated user, we issue a POST to the
same URI with a JSON payload specifying the repo information:

POST http://api.github.com/users/repos/ HTTP/1.1
Content-Type: application/json
Content-Length:xx

{
  "name": "New-Repo",
  "description": "This is a new repo",
  "homepage": "https://github.com",
  "private": false,
  "has_issues": true,
  "has_wiki": true,
  "has_downloads": true
}
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Crossing the Chasm Toward Resource-Centric APIs
Designing resource-oriented APIs can be challenging, as the noun-centric/non-object-
oriented style is a big paradigm shift from the way developers traditionally design pro‐
cedural or object-oriented APIs in 4GL programming languages. The process involves
analyzing the key elements of the system that clients need to interact with and exposing
those as resources.

One challenge API designers face when doing this is how to handle situations where
the existing set of HTTP methods seems insufficient. For example, given an Order
resource, how do you handle an approval? Should you create an Approval HTTP meth‐
od? Not if you want to be a good HTTP citizen, as clients or servers would never expect
to deal with an APPROVAL method. There are a couple of different ways to address this
scenario.

• Have the client do a PUT/PATCH against the resource and have Approved=True in‐
cluded as part of the payload. It could be either in JSON or even a form URL encoded
value passed in the query string:

PATCH http://example.com/orders/1?approved=true HTTP/1.1

• Factor out APPROVAL as a separate resource and have the client POST or PUT to it:
POST http://example.com/orders/1/approval HTTP/1.1

Hypermedia (RMM Level 3)
The last level in Richardson’s scale is hypermedia. Hypermedia are controls or affor‐
dances present in the response that clients use for interacting with related resources for
transitioning the application to different states. Although RMM defines it as a strict
level, that is a bit misleading. Hypermedia can be present in an API, even in an RPC-
oriented one.
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The Origins of Hypermedia on the Web
Hypermedia and hypertext are concepts that are part of the very foundations of the Web
and HTTP. In Tim Berners-Lee’s original proposal for the World Wide Web, he spoke
about hypertext:

HyperText is a way to link and access information of various kinds as a web of nodes in
which the user can browse at will. Potentially, HyperText provides a single user-interface
to many large classes of stored information such as reports, notes, data-bases, computer

documentation and on-line systems help.

He then went on to propose the creation of a new system of servers based on this con‐
cept, which has evolved to become the World Wide Web:

We propose the implementation of a simple scheme to incorporate several different servers
of machine-stored information already available at CERN, including an analysis of the

requirements for information access needs by experiments.

Hypermedia is derived from hypertext and expands to more than just simple documents
to include content such as graphics, audio, and video. Roy Fielding used the term in
Chapter 5 of his dissertation on network architecture, where he discusses Representa‐
tional State Transfer (REST). He defines right off the bat that hypermedia is a key com‐
ponent of REST:

This chapter introduces and elaborates the Representational State Transfer (REST) ar‐
chitectural style for distributed hypermedia systems.

There are two primary categories of hypermedia affordances: links and forms. To see
the role each plays, let’s look at HTML.

HTML has many different hypermedia affordances, including <A href>, <FORM>, and
<IMG> tags. When viewing an HTML page in a browser, a user is presented with a set of
different links from the server that are rendered in the browser. Those links are identified
by the user via either the link description or an image. The user then clicks the links of
interest. The page can also include forms. If a form is present, such as for creating an
order, the user can fill out the form fields and click Submit. In either case, the user is
able to navigate the system without any knowledge of the underlying URI.

In the same way, a hypermedia API can be consumed by a nonbrowser client. Similar
to the HTML example, the links and forms are present but can be rendered in different
formats, including XML and JSON. For more on forms, see “Hypermedia and Forms”
on CodeBetter.

A link in a hypermedia API includes a minimum of two components:

API Styles | 37

http://bit.ly/w3c-prop
http://bit.ly/REST-fielding
http://bit.ly/hype-forms


• A URI to the related resource
• A rel that identifies the relationship between the linked resource and the current

resource

The rel (and possibly other metadata) is the identifier that the user agent cares about.
The rel indicates how the resource to which the link points relates to the current re‐
source.

Measuring Hypermedia Affordances with H-Factors
Mike Amundsen has created a measurement called an H-factor designed to measure
the level of hypermedia syupport within a media type. H-factors are divided into two
groups with their own factors:

• Link support
— [LE]Embedding links
— [LO]Outbound links
— [LT]Templated queries
— [LN]Nonidempotent updates
— [LI]Idempotent updates

• Control data support
— [CR]Control data for read requests
— [CU]Control data for update requests
— [CM]Control data for interface methods
— [CL]Control data for links

H-factors are a useful way to compare and contrast the different types of hypermedia
APIs that exist.

Returning to the order example, we can now see how hypermedia will play in. In each
of the aforementioned scenarios, the client has complete knowledge of the URI space.
In the hypermedia case, however, the client knows only about one root URI, which it
goes to in order to discover the available resources in the system. This URI acts almost
like a home page—in fact, it is a home resource:

GET /home
Accept: application/json; profile="http://example.com/profile/orders"

In this case, the client sends an Accept header with an orders profile:
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HTTP/1.1 200 OK
Content-Type: application/json; profile="http://example.com/profile/orders"
Content-Length: xx

{
  "links" : [
    {"rel":"orders", "href": "/orders"},
    {"rel":"shipping", "href": "/shipping"}
    {"rel":"returns", "href": "/returns"}
  ]
}

The home resource contains pointers to the other parts of the system—in this case,
orders, shipping, and returns. To find out how to interact with the resources that the
links point to, the developer building the client can reference the profile documentation
at the profile URL just indicated. The document states that if a client sees a link with a
rel of orders, it can POST an order to that resource to create a new one. The content
type can just be JSON, as the server will try to determine the correct elements:

POST /orders
Content-Type: application/json
Content-Length: xx

{
  "orderNumber" : "1000"
}

Here is the response:

HTTP/1.1 201 CREATED
Location: /orders/1000
Content-Type: application/json; profile="http://example.com/profile/orders"
Content-Length: xx
ETag: "12345"

{
  "orderNumber" : "1000",
  "status" : "active"
  "links" : [
    {"rel":"self", "href": "/orders/1000"},
    {"rel":"approve", "href": "/orders/1000/approval"}
    {"rel":"cancel", "href": "/orders/1000/cancellation"}
    {"rel":"hold", "href": "/orders/1000/hold"}
  ]
}

Notice that in addition to the order details, the server has included several links that are
applicable specifically for the current order:

• "self" identifies the URL for the order itself. This is useful as a bookmark to the
order resource.
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• "approve" identifies a resource for approving the order.
• "cancel" identifies a resource for placing a cancellation.
• "hold" identifies a resource for putting the order on hold.

Now that the client has the order, it can follow the approval link. The profile spec in‐
dicates that the client should do a PUT against the URL associated with a rel of ap
prove in order to approve the order:

PUT /orders/1000/approval
Content-Type: application/json

The response will be identical to the Level 2 response:

HTTP/1.1 403 Forbidden
Content-Type: application/json; profile="http://example.com/profile/orders"
Content-Length: xx

{
  "error": {
    "code" : "100",
    "message" : "Missing information"
  }
}

Paypal recently introduced a new payments API that incorporates hypermedia in its
responses.

The following is an extract of a response for a payment issued using the new API:

"links": [
  {
    "href": "https://api.sandbox.paypal.com/v1/payments/sale/1KE480",
    "rel": "self",
    "method": "GET"
  },
  {
    "href": "https://api.sandbox.paypal.com/v1/payments/sale/1KE480/refund",
    "rel": "refund",
    "method": "POST"
  },
  {
    "href": "https://api.sandbox.paypal.com/v1/payments/payment/PAY-34629814W",
    "rel": "parent_payment",
    "method": "GET"
  }

As you can see, it contains the self link mentioned previously, as well as links for sub‐
mitting for a refund and accessing the parent payment. Notice that, in addition to the
standard href and rel members, each link contains a method member that advises the
client on which HTTP method it should use. In this case, the media type Paypal returns
is application/json. This means the client cannot simply tell by the response headers
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that the payload is in fact a Paypal payload. However, the Paypal documentation explains
the rel, and that it is possible to navigate the system without hardcoding against URLs.

In each of the previous examples, hypermedia provides the benefit that the client has to
know only a single root URL to access the API and get the initial response. From that
point on, it follows its nose by navigating to whatever URLs the server serves up. The
server is free to change those URLs and offer the client specifically targeted links without
affecting other clients. As with all things, there are trade-offs.

Implementing a hypermedia system is significantly more difficult, and is a mind shift.
More moving parts are introduced into the system as part of the implementation. In
addition, using hypermedia-based approaches for APIs is a young and evolving “sci‐
ence,” so you do have some of your work cut out for you. In many cases the trade-off is
worth it, in particular if you are building an open system that needs to support many
third-party clients.

REST
REST, or Representational State Transfer, is probably one of the most misunderstood
terms in Web API development today. Most people equate REST with anything that is
easy to access over HTTP and forget about its constraints completely.

The term’s roots are from Roy Fielding’s previously mentioned dissertation on network-
based architecture. In it, Roy describes REST as an architectural style for distributed
hypermedia systems. In other words, REST is not a technology, it is not a framework,
and it is not a design pattern. It is a style. There is no “one true way” to do REST, and as
a result, there are many flavors of RESTful systems. However, what is most important
is that all RESTful systems manifest themselves in a set of constraints, which will be
mentioned in more depth in the following section.

The other common misunderstanding is that you must build a RESTful system. This is
not the case. The RESTful constraints are designed to create a system that achieves a
certain set of goals—in particular, a system that can evolve over a long period of time
and can tolerate many different clients and many different changes without breaking
those clients.

REST Constraints
REST defines the following six constraints (including one optional) as part of the style:
Client-server

A RESTful system is designed to separate out the UI concerns from the backend.
Clients are decoupled from the server, thus allowing both to evolve independently.
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Stateless
For each request in a RESTful system, all of the application state is kept on the client
and transferred in the request. This allows the server to receive all the information
it needs to process the request without having to track each individual client. Re‐
moving statefulness from the server allows the application to easily scale.

Cache
Data within a request must be able to be identified as cachable. This allows client
and server caches to act on behalf of the origin server and to return cached repre‐
sentations. Cachability greatly reduces latency, increases user-perceived perfor‐
mance, and improves overall system scale, as it decreases the load on the server.

Uniform interface
RESTful systems use a standardized interface for system interaction.

Identification of resources
This means that the point of interaction in a RESTful system is a resource. This is
the same resource that we discussed earlier.

Self-descriptive messages
This means that each message contains all the information necessary for clients and
servers to interact. This includes the URI, HTTP method, headers, media type, and
more.

Manipulation of resources through representations
As we covered previously, a resource can have one or more representations. In a
RESTful system, it is through these representations that resource state is commu‐
nicated.

Hypermedia as the engine of application state
Previously we discussed hypermedia and the role it plays in driving the flow of the
application. That model is a core component of a RESTful system.

Layered system
Components within a RESTful system are layered and composed with each com‐
ponent having a limited view of the system. This allows layers to be introduced to
adapt between legacy clients and servers and enables intermediaries to provide
additional services like caching, enforcing security policies, compression, and
more.

Code on demand
This allows clients to dynamically download code that executes on the client in
order to help it interact with the system. One very popular example of this is the
way client-side JavaScript executes in the browser, as it is downloaded on demand.
Being able to introduce new application code improves the the system’s capacity to
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evolve and be extended. Because it reduces visibility, however, this constraint is
considered optional.

As you can see, building a RESTful system is not free and not necessarily easy. There
have been many books written in depth on the topics just mentioned. Although making
a system RESTful is not trivial, it can be worth the investment depending on the system’s
needs. For this reason, this book does not focus on REST but rather focuses on evolv‐
ability and techniques to achieve that when building your Web APIs. Each of these
techniques is a pathway toward a fully RESTful system but provides a benefit in its own
right.

Put another way, focus on the needs of your system and not whether you can stamp it
with a “REST” badge or not.

For more clarification on REST as a term, Kelly Sommers has a well-written post that
covers this topic in more detail.

To learn more about building RESTful and hypermedia-based systems, check out REST
in Practice (O’Reilly) and Building Hypermedia APIs with HTML5 and Node (O’Reilly).

Conclusion
In this chapter, we learned about the origin of APIs, explored the growth of APIs in the
industry, and dove into APIs themselves. Now it’s time to meet ASP.NET Web API,
Microsoft’s answer to building APIs. In the next chapter, you’ll learn about the frame‐
work, its design goals, and how to get started with it for API development.
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CHAPTER 3

ASP.NET Web API 101

It’s easier to plot a course once you’ve seen the map.

Now that we’ve established the context around why Web APIs are important for modern
networked applications, in this chapter we’ll take a first look at ASP.NET Web API.
ASP.NET Web API and the new HTTP programming model offer different capabilities
for both building and consuming Web APIs. First we’ll explore some of the core Web
API goals and the capabilities that support them. We’ll then see how those capabilities
are exposed to your code in ASP.NET Web API by looking at its programming model.
What better way to examine that than by looking at the code provided by the Visual
Studio Web API project template? Finally, we’ll go beyond the default template code
and construct our first “Hello World” Web API.

Core Scenarios
Unlike many technologies, ASP.NET Web API has a very well-documented and acces‐
sible history (some is recorded on CodePlex). From the beginning, the development
team made the decision to be as transparent as possible so that the product could be
influenced by the community of experts who would ultimately use it to build real sys‐
tems. I’ve distilled all that history down to the core goals that ASP.NET was created to
address:

• First-class HTTP programming
• Symmetric client and server programming experience
• Flexible support for different formats
• No more “coding with angle brackets”
• Unit testability
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• Multiple hosting options

Now, while these are key goals, they by no means represent an exhaustive list of all that
the framework enables. ASP.NET Web API brings together the best of Windows Com‐
munication Foundation (WCF), with its infinitely extensible architecture, client sup‐
port, and flexible hosting model, and ASP.NET MVC, with its support for convention
over configuration, improved testability, and advanced features such as model binding
and validation. As we’ll begin to explore in this chapter, the result is a framework that
is approachable for getting started, and easily customizable as your needs evolve.

First-Class HTTP Programming
When you are building modern Web APIs—especially for simpler clients such as mobile
devices—the success of that API is often related to its expressiveness. And the expres‐
siveness of a Web API depends on how well it uses HTTP as an application protocol.
Using HTTP as an application protocol goes far beyond simply handling HTTP requests
and producing HTTP responses. It means that the behavior of both the application and
the underlying framework is controlled by HTTP control flow and data elements rather
than by some additional data that is merely (and incidentally) transmitted via HTTP.
For example, consider the following SOAP request used to communicate with a WCF
service:

POST http://localhost/GreetingService.svc HTTP/1.1
Content-Type: text/xml; charset=utf-8
SOAPAction: "HelloWorld"
Content-Length: 154

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
  <s:Body>
        <HelloWorld xmlns="http://localhost/wcf/greeting"/>
  </s:Body>
</s:Envelope>

In this example, the client issues a request to the server to obtain a friendly greeting
message. As you can see, the request is being sent via HTTP. However, this is really
where the association with HTTP stops. Rather than using HTTP methods (sometimes
called verbs) to communicate the nature of the action requested of the service, the ap‐
proach shown here sends all requests using the same HTTP method—POST—and wraps
the application-specific details in both the HTTP request body and the custom SOAPAc
tion header. As you might expect, we see the same pattern repeated on the response
produced by the service:

HTTP/1.1 200 OK
Content-Length: 984
Content-Type: text/xml; charset=utf-8
Date: Tue, 26 Apr 2011 01:22:53 GMT
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<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
  <s:Body>
    <HelloWorldResponse xmlns="http://localhost/wcf/greeting">
      ...
    </HelloWorldResponse>
  </s:Body>
</s:Envelope>

As in the case of the request message, the protocol elements used to control the appli‐
cation—that is, the way that the client and server applications understand one another
—have been pulled out of the HTTP elements and placed inside the XML bodies of the
request and response, respectively.

In this approach, HTTP is not being used to express the application protocol, but rather
as a simple transport for a different application protocol—SOAP, in this case. And while
this can be a good thing for scenarios where a single service needs to communicate with
similar clients across lots of different protocols, it can be problematic when the need is
to communicate with lots of very different clients across a single protocol. These kinds
of problems are illustrated perfectly in the case of Web APIs, where the diversity of not
only clients, but also of the communication infrastructure between clients and services
(e.g., the Internet), is large and constantly changing. In this world, clients and services
should be optimized not for protocol independence but rather for creating a first-class
experience around a common application protocol. In the case of applications that
communicate via the Web, that protocol is HTTP.

At its core, ASP.NET Web API is built around a small set of HTTP primitive objects.
The two most notable of these are HttpRequestMessage and HttpResponseMessage.
The purpose of these objects is to provide a strongly typed view of an actual HTTP
message. For example, consider the following HTTP request message:

GET http://localhost:50650/api/greeting HTTP/1.1
Host: localhost:50650
accept: application/json
if-none-match: “1”

Assuming that this request was received by an ASP.NET Web API service, we can access
and manipulate the various elements of this request using code similar to the following
in a Web API controller class:

var request = this.Request;
var requestedUri = request.RequestUri;
var requestedHost = request.Headers.Host;
var acceptHeaders = request.Headers.Accept;
var conditionalValue = request.Headers.IfNoneMatch;

This strongly typed model provides the correct level of abstraction over HTTP, em‐
powering the developer to work directly with an HTTP request or response while freeing
her from having to deal with lower-level issues such as raw message parsing or gener‐
ation.
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1. The catalog of public media types is maintained by the IANA.

Symmetric Client and Server Programming Experience
One of the most appealing aspects of ASP.NET Web APIs being built around this HTTP-
focused object library is that the library can be used not only on the server but also in
client applications that are built using the .NET Framework. This means that the HTTP
request shown here can be created with the same HTTP programming model classes
that are ultimately used to work with the request inside of a Web API, as shown later in
this chapter.

As you’ll see in Chapter 10, there’s a lot more to the HTTP programming model than
simply manipulating the various data elements of requests and responses. Features like
message handlers and content negotiation are built directly into the HTTP program‐
ming model so that you can take advantage of them on both the client and the server
to deliver sophisticated client-server interactions while simultaneously reusing as much
of your code as possible.

Flexible Support for Different Formats
Content negotiation will be talked about in much more depth in Chapter 13, but at a
high level, it is the process whereby a client and server work together to determine the
right format to use when exchanging representations over HTTP. There are several
different approaches and techniques for performing content negotiation, and by default,
ASP.NET Web API supports the server-driven approach using the HTTP Accept header
to let clients choose between XML and JSON. If no Accept header is specified, ASP.NET
Web API will return JSON by default (though, like most aspects of the framework, this
default behavior can be changed).

For example, consider the following request to an ASP.NET Web API service:

GET http://localhost:50650/api/greeting HTTP/1.1

Because this request contains no Accept header to provide the server with a desired
format, the server will return JSON. We can change this behavior by adding an Ac
cept header to our request and specifying the correct media type identifier for XML:1

GET http://localhost:50650/api/greeting HTTP/1.1
accept: application/xml

No More “Coding with Angle Brackets”
As the .NET Framework has matured, one of the ever-growing complaints from devel‐
opers has been related to the amount of XML configuration required to enable seemingly
basic or even default scenarios. Even worse, because configuration controlled things
such as which types should be loaded at runtime, configuration changes could introduce
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errors into a system that would not be caught by the compiler, but only at runtime. One
of the biggest examples of this complaint can be found in ASP.NET Web API’s prede‐
cessor, WCF. And while WCF itself has improved in the amount of configuration it
requires, the ASP.NET Web API team went a totally different direction by introducing
an entirely code-based configuration mode. ASP.NET Web API configuration will be
discussed at length in Chapter 11.

Unit Testability
As techniques such as test-driven development (TDD) and behavior-driven develop‐
ment (BDD) have become more popular, there has been a proportional increase in
frustration with many of the popular service and web frameworks over their use of static
context objects, sealed types, and deep inheritance trees. These techniques make unit
testing challenging in that objects become difficult to create and initialize in isolation
from the underlying runtime; they also are very hard to substitute with a “fake” instance
for better testing isolation.

For example, ASP.NET relies heavily on the HttpContext object, while WCF similarly
relies on OperationContext (or WebOperationContext depending on the type of ser‐
vice). The fundamental problem with static context objects like these is that they are set
up by and rely on their respective framework’s runtimes. As a result, testing a service
that was developed using these context objects requires actually starting a service host
and running the service. And while this technique is generally acceptable for
integration-style tests, it is unsuitable for a development style such as TDD, which relies
on being able to run smaller unit tests very quickly.

One of the goals in ASP.NET Web API is to provide much-improved support for these
kinds of development styles, and there are two characteristics of the framework that
accomplish this goal. First, ASP.NET Web API has the same programming model as the
MVC framework. This enables it to take advantage of the testability work that was done
a few years ago, including abstractions to avoid having to use static context objects and
wrappers so that “fake” instances can be supplied to unit tests.

Second, remember that ASP.NET Web API is built around the HTTP programming
model. The objects in this model are effectively simple data structures that can be cre‐
ated, configured, passed to an action method as a parameter, and analyzed when re‐
turned. This enables unit tests to be authored in a very clean, focused manner. As
ASP.NET Web API has evolved, testing has remained a focus area for the team, as evi‐
denced by the HttpRequestContext class in Web API 2. Testability will be discussed at
greater length in Chapter 17.
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Multiple Hosting Options
Despite some of its lesser qualities, one of the greatest attributes of WCF was its ability
to “self-host”--that is, its ability to run in any process, for example a Windows service,
a console application, or Internet Information Services (IIS). In fact, this kind of hosting
flexibility made its limitations in unit testing almost bearable…almost.

When consolidating WCF Web API with ASP.NET to form ASP.NET Web API, the team
wanted to keep this self-hosting ability, and so ASP.NET Web API services, like WCF
services, can run in whatever process you choose. We’ll look at hosting in much greater
depth in Chapter 11.

Getting Started with ASP.NET Web API
Now that we’ve reviewed some of the goals behind the development of ASP.NET Web
API, let’s dive in and take a look at some of the various elements that you will be working
with as you create your own Web APIs. One of the simplest ways to accomplish this is
by creating a brand new ASP.NET Web API project and looking at the artifacts that the
project template creates. To create a new ASP.NET Web API project, navigate to the Web
node in the New Project dialog and select ASP.NET Web Application (Figure 3-1).

Figure 3-1. MVC 4 Web Application project in the Visual Studio 2012 New Project dia‐
log
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Once you choose to create an ASP.NET Web application, you will be presented with an
additional dialog that gives you the ability to choose various project configurations.
From this dialog, you will see the option to create a Web API project (Figure 3-2).

Figure 3-2. Web API project type in the MVC 4 New Project dialog

The key thing to note through this process is that Web API is simply a different project
template within the family of ASP.NET projects. This means that Web API projects share
all of the same core components as the other web project types, and differ only by the
files that the template creates for you as a starting point. It also means that it’s both valid
and desired to include Web APIs in any of the other templates shown in Figure 3-2.

In fact, at the end of the day, ASP.NET Web API is simply a set of classes built on top of
the Web API framework components and hosted by a process, whether it’s the ASP.NET
runtime as the default template sets up or your own custom host (as we will describe in
more detail later in this chapter). This means that a Web API can go into any type of
project, whether it’s an MVC project, a console application, or a class library that you
reference from multiple host projects.

The ASP.NET Framework components are made available to your Web API projects via
the NuGet package management application. The NuGet packages listed in Table 3-1
are installed by the default project template. To create a Web API in your own project,
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you simply need to ensure that you’ve installed the same packages based on the level of
functionality that you require.

Table 3-1. NuGet packages for ASP.NET Web API
Package name Package IDa Description Package dependenciesb

Microsoft .NET
Framework 4 HTTP
Client Libraries

Microsoft.Net.Http Provides the core HTTP
programming model,
including HttpRe
questMessage and
HttpResponsemes

sage

(none)

Microsoft ASP.NET
Web API

Microsoft.AspNet.WebApi NuGet meta-packagec

providing a single
reference for installing
everything needed to
create and host a Web
API in ASP.NET

Microsoft.AspNet.WebApi.WebHost

Microsoft ASP.NET
Web API Client
Libraries

Microsoft.AspNet.WebApi.Client Contains extensions to
the core .NET
Framework 4 HTTP
client libraries to enable
features such as XML
and JSON formatting as
well as the ability to
perform content
negotiation

Microsoft.Net.Http Newtonsoft.Jsond

Microsoft ASP.NET
Web API Core
Libraries

Microsoft.AspNet.WebApi.Core Contains the core Web
API programming
model and runtime
components including
the key ApiControl
ler class

Microsoft.AspNet.WebApi.Client

Microsoft ASP.NET
Web API Web Host

Microsoft.AspNet.WebApi.WebHost Contains all of the
runtime components
needed to host a Web
API in the ASP.NET
runtime

Microsoft.Web.Infrastructure
Microsoft.AspNet.WebApi.Core

a You can use the package ID to learn more about the package by appending it to the URL ID}.
b A NuGet package dependency means that when you install a package, NuGet will first attempt to install all of the packages on
which that the package depends.
c A NuGet meta-package is a package that contains no actual content of its own, but only dependencies to other NuGet packages.
d While used by ASP.NET Web API, Newtonsoft.Json is an external component available for free download.

In addition to the NuGet packages that are installed as a part of the default project
templates, the NuGet packages shown in Table 3-2 are also available.
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Table 3-2. Additional NuGet packages available for ASP.NET Web API
Package name Package ID Description Package dependencies

Microsoft
ASP.NET Web API
Self Host

Microsoft.AspNet.WebApi.SelfHost Contains all of the runtime
components needed to host a Web
API in a custom process (e.g.,
console application)

Microsoft.AspNet.WebApi.Core

Microsoft
ASP.NET Web API
OWIN

Microsoft.AspNet.WebApi.Owin Allows you to host ASP.NET Web
API within an OWIN server and
provides access to additional OWIN
features

Microsoft.AspNet.WebApi.Core,
Microsoft.Owin, Owin

Looking at the set of NuGet packages as a graph may give you a better understanding
of which package or packages to install in your project based on what you are trying to
accomplish. For example, consider Figure 3-3.

Figure 3-3. NuGet package hierarchy for Web API

As you can see from the dependency graph, installing any one of these NuGet packages
will automatically install all of the NuGet packages that are connected, directly or in‐
directly, to it. For example, installing Microsoft.AspNet.WebApi will install Micro
soft.AspNet.WebApi.WebHost, Microsoft.AspNet.WebApi.Core, Microsoft.Web.In
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frastructure, Microsoft.AspNet.WebApi.Client, Newtonsoft.Json, and Micro
soft.Net.Http.

Exploring a New Web API Project
Now that we’ve created a new web-hosted ASP.NET Web API project, we’ll explore some
of the key elements created by the project template, which we will customize in order
to create our own Web APIs. We will focus on two key files: WebApiConfig.cs and
ValuesController.cs (Figure 3-4).

Figure 3-4. WebApiConfig.cs and ValuesController.cs within the Visual Studio 2013
Solution Explorer

WebApiConfig
This C# or Visual Basic.NET file is located in the App_Start top-level folder and declares
the class WebApiConfig. This class contains a single method called Register and is called
by code in the Application_Start method inside of global.asax. As its name indicates,
the purpose of the class is to register various aspects of Web API’s configuration. By
default, the primary configuration code generated by the project template registers a
default Web API route. This route is used to map inbound HTTP requests onto con‐

54 | Chapter 3: ASP.NET Web API 101



troller classes as well as parse out data elements that may be sent as a part of the URL
and make those available to other classes in the processing pipeline. The default WebA
piConfig class is shown in Example 3-1.

Example 3-1. Default WebApiConfig class
public static class WebApiConfig
{
    public static void Register(HttpConfiguration config)
    {
        // Web API configuration and services

        // Web API routes
        config.MapHttpAttributeRoutes();

        config.Routes.MapHttpRoute(
            name: "DefaultApi",
            routeTemplate: "api/{controller}/{id}",
            defaults: new { id = RouteParameter.Optional }
        );
    }
}

If you are familiar with MVC development, then you may have observed that ASP.NET
Web API provides a different set of extension methods to register its routes than the
default MVC routes. For example, the very same new project containing the WebApi
Config class also contains the following:

public class RouteConfig
{
    public static void RegisterRoutes(RouteCollection routes)
    {
        routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

        routes.MapRoute(
            name: "Default",
            url: "{controller}/{action}/{id}",
            defaults: new { controller = "Home", action = "Index",
                id = UrlParameter.Optional }
        );
    }
}

Having two route configuration methods can be confusing on first inspection, so it’s
worth explaining the high-level differences between them. The point to keep in mind
here is that these “Map” methods are simply extension methods that create an instance
of a route and add it to the route collection associated with the host. The difference
between them, and the subsequent reason behind the two different methods, is in the
fact that ASP.NET MVC and ASP.NET Web API use completely different route classes
and even route collection types. The details of these types will be discussed in greater
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detail in Chapter 11, but the reason for breaking away from the routing types used by
ASP.NET MVC was to enable ASP.NET Web API to split from much of the legacy that
resided alongside the Route and RouteCollection classes in the System.Web assembly,
thereby providing a great deal more flexibility in terms of hosting options. An immediate
benefit of this design decision is ASP.NET Web API’s self-host capability.

Configuring ASP.NET Web API routing requires declaring and adding HttpRoute in‐
stances to the route collection. Even though HttpRoute instances are created with a
different extension method than that used for ASP.NET MVC, the semantics are nearly
identical, including elements such as route name, route template, parameter defaults,
and even route constraints. As you can see in Example 3-1, the project template’s route
configuration code sets up a default API route that includes a URI prefix of “api” fol‐
lowed by the controller name and an optional ID parameter. Without any modification,
this route declaration is typically sufficient for getting started creating APIs that allow
for fetching, updating, and deleting data. This is possible because of the way in which
ASP.NET Web API’s controller class maps HTTP methods onto controller action meth‐
ods. We’ll cover HTTP method mapping in more detail later in this chapter, as well as
in much greater detail in Chapter 12.

ValuesController
The ApiController class, which is the parent class of ValuesController, is at the heart
of ASP.NET Web API. While we can create a valid ASP.NET Web API controller by
simply implementing the various members of the IHttpController interface, in prac‐
tice we’ll create most ASP.NET Web API controllers by deriving from the ApiControl
ler class. This class plays the role of coordinating with various other classes in the
ASP.NET Web API object model to perform a few key tasks in processing an HTTP
request:

• Select and run an action method on the controller class.
• Convert elements of an HTTP request message into parameters on a controller

action method and convert the return value of an action method into a valid HTTP
response body.

• Run various types of filters that have been configured for the action method, the
controller, or globally.

• Expose appropriate context state to the action methods of the controller class.

By deriving from ApiController and taking advantage of the key processing tasks that
it performs, the ValuesController class that is included as a part of the Web API tem‐
plate shows the higher-level abstraction that can be built on top of ApiController.
Example 3-2 shows the ValuesController code.
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Example 3-2. Default ValuesController class
public class ValuesController : ApiController
{
    // GET api/values
    public IEnumerable<string> Get()
    {
        return new string[] { "value1", "value2" };
    }

    // GET api/values/5
    public string Get(int id)
    {
        return "value";
    }

    // POST api/values
    public void Post([FromBody]string value)
    {
    }

    // PUT api/values/5
    public void Put(int id, [FromBody]string value)
    {
    }

    // DELETE api/values/5
    public void Delete(int id)
    {
    }
}

The ValuesController class, while simple, provides a helpful first look at the controller
programming model.

First, notice the names of the controller’s action methods. By default, ASP.NET Web
API follows the convention of selecting an action method, in part, by comparing the
HTTP method to the action name. More precisely, ApiController looks for a controller
action method whose name starts with the appropriate HTTP method. Therefore, in
Example 3-2, an HTTP GET request to /api/values will be served by the parameterless
Get() method. The framework offers different ways to tailor this default name-
matching logic and provides extensibility points, enabling you to replace it entirely if
desired. More details on controller and action selection can be found in Chapter 12.

In addition to selecting an action method based on the HTTP method, ASP.NET Web
API can select the action based on additional elements of the request, such as query
string parameters. More importantly, the framework supports binding these request
elements to parameters of the action method. By default, the framework uses a combi‐
nation of approaches to accomplish parameter binding, and the algorithm supports
both simple and complex .NET types. For HTTP responses, the ASP.NET Web API
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programming model enables action methods to return .NET types and it converts those
values into the appropriate HTTP response message body using content negotiation.
You can find much more detail on parameter binding and content negotiation in Chap‐
ter 13.

At this point, we’ve discussed some of ASP.NET Web API’s design, and we’ve scratched
the surface of the programming model in looking at the code provided as a part of the
project template. We’ll now go a bit deeper and create our first “Hello World” Web API.

“Hello Web API!”
For our first ASP.NET Web API, we’re going to build a simple greeting service. And
what greeting is more ubiquitous in programming literature than “Hello World!”?
Therefore, we’ll start out with this simple read-only greeting API and then add several
improvements throughout the remainder of this chapter to illustrate other aspects of
ASP.NET Web API’s programming model.

Creating the Service
To create the service, simply create a new ASP.NET Web Application from Visual Studio’s
New Project dialog. From the Web Application Refinement dialog, select Web API. This
action will create a new ASP.NET Web API project from the default template.

A read-only greeting service
Starting from the default Web API project template, add a new controller. You can do
this by either adding a new class or leveraging the controller item template provided by
Visual Studio. To add the controller using the item template, right-click on the control‐
lers folder and select the Add → Controller option from the context menu (Figure 3-5).

Figure 3-5. Visual Studio context menu for adding a new controller
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This will display another dialog from which you’ll provide additional configuration
details about the controller being created. We are going to create a controller called
GreetingController and will use the Empty API controller item template (Figure 3-6).

Figure 3-6. Web API controller scaffolding

Completing the item template dialog will produce a new GreetingController class,
which derives from the ApiController class. To have our new API return a simple
greeting, we need to add a method capable of responding to an HTTP GET request for
the controller. Remember that because of our default routing rule, GreetingControl
ler will be selected for an HTTP request, api/greeting. Therefore, let’s add a simple
method to handle GET requests as follows:

public class GreetingController : ApiController
{
    public string GetGreeting() {
        return "Hello World!";
    }
}

We can now test our Web API to see that it is in fact returning our simple greeting. For
this, we’ll use the HTTP debugging proxy tool called Fiddler. One particularly helpful
feature of Fiddler when it comes to testing Web APIs is its ability to compose HTTP
messages and execute them. We can use this feature to test our greeting API as shown
in Figure 3-7.
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Figure 3-7. Using Fiddler to compose a new HTTP request

When we execute the request, we can then explore both the request and response using
Fiddler’s session inspector as shown in Figure 3-8.

Figure 3-8. Examining HTTP requests and responses using Fiddler

As expected, this basic HTTP GET request to the greeting service returns the simple
string “Hello World!”

Content negotiation

Returning to Figure 3-8, take a closer look at the HTTP Content-Type response header.
By default, ASP.NET Web API will transform return values from action methods into
the JSON format using the popular Json.NET library first referenced in Figure 3-3.
However, as described earlier in this chapter, ASP.NET Web API supports server-driven
content negotiation, and by default supports content negotiation between JSON and
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XML. To see this in action, go back to Fiddler’s request composer and add the following
line to the request headers text box:

accept: application/xml

Then execute the request again and notice that the response now contains the header
Content-Type: application/xml and the response body is now formatted as XML
(Figure 3-9).

Figure 3-9. The content-negotiated request and response for our basic greeting

Add a greeting
While it’s interesting to be able to get a greeting in different formats, any nontrivial API
needs the ability to manipulate the state, or the data, of the system. Therefore, we’ll
extend the greeting service and give clients the ability to add new greetings. The idea is
that a client can specify a greeting name and message, add it to the service, and then
GET it again later via a URL that includes the greeting name. In addition, we need to
handle cases where a client misspells or otherwise incorrectly specifies the greeting name
in the URL by returning an HTTP 404 status code indicating that the resource could
not be found.

To allow the client to create new greetings on the server, we need to create a model class
to hold the greeting message’s name and message properties. We accomplish this by
adding the following class to the project’s Models folder:

public class Greeting
{
    public string Name    {
        get;
        set;
    }

    public string Message    {
        get;
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        set;
    }
}

We then create an action method on the GreetingController, which handles the HTTP
POST request and is capable of accepting a Greeting instance as a parameter.

The action adds the greeting to a static list of greetings and returns an HTTP 201 status
code along with a Location header pointing to the URL of the newly created greeting
resource. The additional location header makes it possible for clients to simply follow
the link value rather than requiring them to construct the URL for the new greeting
resource, thereby making them more resilient since server URL structures can change
over time:

public static List<Greeting> _greetings = new List<Greeting>();

public HttpResponseMessage PostGreeting(Greeting greeting) {
    _greetings.Add(greeting);

    var greetingLocation = new Uri(this.Request.RequestUri,
        "greeting/" + greeting.Name);
    var response = this.Request.CreateResponse(HttpStatusCode.Created);
    response.Headers.Location = greetingLocation;

    return response;
}

After adding the new greeting to the static collection, we create a URI instance repre‐
senting the location where the new greeting can be found in subsequent requests. We
then create a new HttpResponseMessage using the CreateResponse factory method of
the HttpRequestMessage instance provided by the ApiController base class. The abil‐
ity to work with HTTP object model instances from within action methods is a key
feature of ASP.NET Web API; it provides fine-grained control over the HTTP message
elements, such as the location header, in a way that does not rely on static context objects
like HttpContext or WebOperationContext. This proves particularly beneficial when it
comes to writing unit tests for Web API controllers, as we’ll discuss next.

Finally, we need to add an overload for the GetGreeting method that is capable of
fetching and returning a client-supplied, custom greeting:

public string GetGreeting(string id) {
    var greeting = _greetings.FirstOrDefault(g => g.Name == id);
    return greeting.Message;
}

This method simply looks up the first greeting where the Name property matches the
supplied id parameter and then returns the Message property. It is worth noting that
there is currently not any sort of input validation on the id parameter. This will be
discussed in the next section.
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By default, an HTTP POST body will be handled by a MediaTypeFormatter object that
is chosen based on the Content-Type request header. Accordingly, the following HTTP
request will be handled by the default JSON formatter, which will use Json.NET to
deserialize the JSON string into an instance of the Greeting class:

POST http://localhost:50650/api/greeting HTTP/1.1
Host: localhost:50650
Content-Type: application/json
Content-Length: 43

{"Name": "TestGreeting","Message":"Hello!"}

This resulting instance can then be passed to the PostGreeting method, where it is
added to the collection of greetings. After PostGreeting has processed the request, the
client will see the following HTTP response:

HTTP/1.1 201 Created
Location: http://localhost:50650/api/greeting/TestGreeting

From the location header, the client can then issue a request for the new greeting:

GET http://localhost:50650/api/greeting/TestGreeting HTTP/1.1
Host: localhost:50650

And, as in the case of our initial read-only greeting service, the client can expect the
following response:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Content-Length: 8

"Hello!"

Handling errors
The previous HTTP exchange works wonderfully so long as the server never has any
errors and all clients follow the same rules and conventions. However, what happens in
the event of a server error or an invalid request? This is another area where the ability
to create and work with instances of the HTTP object model proves quite helpful. In
Example 3-3, we want the action method to return a greeting’s string given its name.
However, if the requested greeting name is not found, we want to return a response with
the HTTP 404 status code. For this task, ASP.NET Web API provides the HttpRespon
seException.

Example 3-3. Returning a 404 status code when a greeting cannot be found
public string GetGreeting(string id) {
    var greeting = _greetings.FirstOrDefault(g => g.Name == id);
    if (greeting == null)
        throw new HttpResponseException(HttpStatusCode.NotFound);
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    return greeting.Message;
}

While it would have been reasonable to simply return a new HttpResponseMessage that
included the 404 status code, this would have required always returning an HttpRes
ponseMessage from the GetGreeting action method—unneccessarily overcomplicat‐
ing the nonexception code path. Additionally, the response message would have needed
to flow back through the entire Web API pipeline, which would likely be unnecessary
in the case of an exception. For these reasons, we will throw an HttpResponseExcep
tion rather than return an HttpResponseMessage from the action method. In the event
that an exception contains a response body that supports content negotiation, you can
use the Request.CreateErrorResponse method from the base controller class and pass
the resulting HttpResponseMessage to the HttpResponseException constructor.

Testing the API
One additional benefit of working directly with HTTP object model instances rather
than static context objects is that it enables you to write meaningful unit tests against
your Web API controllers. Testing will be covered in greater depth in Chapter 17, but
as an introductory example, let’s write a quick unit test for the GreetingController’s
PostGreeting action method:

[Fact]
public void TestNewGreetingAdd()
{
    //arrange
    var greetingName = "newgreeting";
    var greetingMessage = "Hello Test!";
    var fakeRequest = new HttpRequestMessage(HttpMethod.Post,
        "http://localhost:9000/api/greeting");
    var greeting = new Greeting { Name =
        greetingName, Message = greetingMessage };

    var service = new GreetingController();
    service.Request = fakeRequest;

    //act
    var response = service.PostGreeting(greeting);

    //assert
    Assert.NotNull(response);
    Assert.Equal(HttpStatusCode.Created, response.StatusCode);
    Assert.Equal(new Uri("http://localhost:9000/api/greeting/newgreeting"),
        response.Headers.Location);
}

This test follows the standard arrange, act, assert pattern of writing unit tests. We create
some control state, including a new HttpRequestMessage instance, to represent the
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entire HTTP request. We then call the method under test using the context and finally
process a few assertions about the response. In this case, the response is an instance of
HttpResponseMessage, and as a result, we are able to process assertions on data elements
of the response itself.

The Client
As mentioned at the beginning of this chapter, one of the other key benefits to building
ASP.NET Web API around a core HTTP programming model is the fact that the same
programming model can be used to build great HTTP applications for both the server
and the client. For example, we can use the following code to construct a request that
will be handled by our first GetGreeting action method:

class Program
{
    static void Main(string[] args)
    {
        var greetingServiceAddress =
            new Uri("http://localhost:50650/api/greeting");

        var client = new HttpClient();
        var result = client.GetAsync(greetingServiceAddress).Result;
        var greeting = result.Content.ReadAsStringAsync().Result;

        Console.WriteLine(greeting);
    }
}

Just like on the server, the client code here creates and processes instances of HttpRe
questMessage and HttpResponseMessage. Additionally, ASP.NET Web API extension
components, such as media type formatters and message handlers, work for clients as
well as servers.

The Host
Developing an ASP.NET Web API for hosting in a traditional ASP.NET application feels
very much the same as developing any other ASP.NET MVC application. One of the
great characteristics of ASP.NET Web API, however, is that it can be hosted in any
process that you designate with hardly any additional work. Example 3-4 shows the code
required for hosting our GreetingController in a custom host process (a console ap‐
plication, in this case).

Example 3-4. A simple Web API console host
class Program
{
    static void Main(string[] args)
    {
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        var config = new HttpSelfHostConfiguration(
        new Uri("http://localhost:50651"));

        config.Routes.MapHttpRoute(
            name: "DefaultApi",
            routeTemplate: "api/{controller}/{id}",
            defaults: new { id = RouteParameter.Optional });

        var host = new HttpSelfHostServer(config);

        host.OpenAsync().Wait();

        Console.WriteLine("Press any key to exit");
        Console.ReadKey();

        host.CloseAsync().Wait();
    }
}

In order to host our Web API in a custom process, we did not modify the controller and
we didn’t have to add any magical XML in the app.config file. Rather, we simply created
an instance of HttpSelfHostConfiguration, configured it with address and routing
information, and then opened the host. Once the host is open and listening for requests,
we block the main console thread in order to avoid closing the server. When the user
chooses to close the host (by pressing any key), we close the Web API host and exit the
console application. Hosting is discussed in greater detail in Chapter 11.

Conclusion
In this chapter, we described some of the key design goals behind ASP.NET Web API.
We then used the Web API project template to see how the different components that
compose the framework are organized and distributed via NuGet, and also to begin to
explore the framework’s programming model by looking at the default template code.
Finally, we wrote our own “Hello World!” Web API and took advantage of ASP.NET
Web API’s self-hosting abilities.

The chapters that follow will drill into each of the topics introduced here and provide
a great deal more depth, starting with Chapter 4, which explores the underlying me‐
chanics that make the ASP.NET Web API work.
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CHAPTER 4

Processing Architecture

And now for something completely different.

The previous chapter presented the core ASP.NET Web API programming model, in‐
troducing the set of fundamental concepts, interfaces, and classes exposed by this
framework. Before we address the book’s core subject of designing evolvable Web APIs,
this chapter takes a short detour to look under the hood and present the underlying
ASP.NET Web API processing architecture, detailing what happens between the recep‐
tion of an HTTP request and the return of the corresponding HTTP response message.
It also serves as a road map for the more advanced ASP.NET Web API features that we
will be addressing in the third part of this book.

During this chapter we will be using the HTTP request presented in Example 4-1, as‐
sociated with the controller defined in Example 4-2, as a concrete example to illustrate
the runtime behavior of this architecture. The ProcessesController contains a Get
action that returns a representation of all the machine’s processes with a given image
name. The exemplifying HTTP request is a GET on the resource identified by http://
localhost:50650/api/processes?name=explorer, which represents all the explorer
processes currently executing.

Example 4-1. Sample HTTP request message
GET http://localhost:50650/api/processes?name=explorer HTTP/1.1
User-Agent: Fiddler
Host: localhost:50650
Accept: application/json

Example 4-2. Sample controller
public class ProcessesController : ApiController
{
    public ProcessCollectionState Get(string name)
    {
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        if (string.IsNullOrEmpty(name))
        {
            throw new HttpResponseException(HttpStatusCode.NotFound);
        }
        return new ProcessCollectionState
        {
            Processes = Process
                .GetProcessesByName(name)
                .Select(p => new ProcessState(p))
        };
    }
}

public class ProcessState
{
    public int Id { get; set; }
    public string Name { get; set; }
    public double TotalProcessorTimeInMillis { get; set; }
    ...

    public ProcessState() { }
    public ProcessState(Process proc)
    {
        Id = proc.Id;
        Name = proc.ProcessName;
        TotalProcessorTimeInMillis = proc.TotalProcessorTime.TotalMilliseconds;
        ...
    }
}

public class ProcessCollectionState
{
    public IEnumerable<ProcessState> Processes { get; set; }
}

The ASP.NET web processing architecture, represented in Figure 4-1, is composed of
three layers:

• The hosting layer is the interface between Web API and the underlying HTTP stacks.
• The message handler pipeline layer can be used for implementing cross-cutting

concerns such as logging and caching. However, the introduction of OWIN (dis‐
cussed in Chapter 11) moves some of these responsibilties down the stack into
OWIN middleware.

• The controller handling layer is where controllers and actions are called, parameters
are bound and validated, and the HTTP response message is created. Additionally,
this layer contains and executes a filter pipeline.

Let’s delve a bit deeper into each layer.
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Figure 4-1. Simplified .ASP.NET Web API processing model
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1. OWIN hosting support was introduced in ASP.NET Web API, version 2.

The Hosting Layer
The bottom layer in the Web API processing architecture is responsible for the hosting
and acts as the interface between Web API and an underlying HTTP infrastructure,
such as the classic ASP.NET pipeline, the HttpListener class found in the .NET Frame‐
work’s System.Net assembly, or an OWIN host. The hosting layer is responsible for
creating HttpRequestMessage instances, representing HTTP requests, and then push‐
ing them into the upper message handler pipeline. As part of processing a response, the
hosting layer is also responsible for taking an HttpResponseMessage instance returned
from the message handler pipeline and transforming it into a response that can be
processed by the underlying network stack.

Remember that HttpRequestMessage and HttpResponseMessage are the new classes
for representing HTTP messages, introduced in version 4.5 of the .NET Framework.
The Web API processing architecture is built around these new classes, and the primary
task of the hosting layer is to bridge them and the native message representations used
by the underlying HTTP stacks.

At the time of writing, ASP.NET Web API includes several hosting layer alternatives,
namely:

• Self-hosting in any Windows process (e.g., console application or Windows service)
• Web hosting (using the ASP.NET pipeline on top of Internet Information

Services (IIS))
• OWIN hosting (using an OWIN-compliant server, such as Katana)1

The first hosting alternative is implemented on top of WCF’s self-hosting capabilities
and will be described in Chapter 10 in greater detail.

The second alternative—web hosting—uses the ASP.NET pipeline and its routing ca‐
pabilities to forward HTTP requests to a new ASP.NET handler, HttpControllerHan
dler. This handler bridges the classical ASP.NET pipeline and the new ASP.NET Web
API architecture by translating the incoming HttpRequest instances into HttpRequest
Message instances and then pushing them into the Web API pipeline. This handler is
also responsible for taking the returned HttpResponseMessage instance and copying it
into the HttpResponse instance before returning to the underlying ASP.NET pipeline.

Finally, the third hosting option layers Web API on top of an OWIN-compliant server.
In this case, the hosting layer translates from the OWIN context objects into a new
HttpRequestMessage object sent to Web API. Inversely, it takes the HttpResponseMes
sage returned by Web API and writes it into the OWIN context.
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There is a fourth option, which removes the hosting layer entirely: requests are sent
directly by HttpClient, which uses the same class model, into the Web API runtime
without any adaptation. Chapter 11 presents a deeper exploration of the hosting layer.

Message Handler Pipeline
The middle layer of the processing architecture is the message handler pipeline. This
layer provides an extensibility point for interceptors that addresses cross-cutting con‐
cerns such as logging and caching. It is similar in purpose to the middleware concept
found in Ruby’s Rack, Python’s WSGI (Web Server Gateway Interface), and the Node.js
Connect framework.

A message handler is simply an abstraction for an operation that receives an HTTP
request message (HttpRequestMessage instance) and returns an HTTP response mes‐
sage (HttpResponseMessage instance). The ASP.NET Web API message handler pipe‐
line is a composition of these handlers, where each one (except the last) has a reference
to the next, called the inner handler. This pipeline organization provides a great deal of
flexibility in the type of operations that can be performed, as depicted in Figure 4-2.

Figure 4-2. Message handler processing examples

The diagram on the left illustrates the usage of a handler to perform some pre- and
postprocessing over request and response messages, respectively. Processing flows from
handler to handler via the InnerHandler relationship—in one direction for request
processing and in the reverse direction for response processing. Examples of pre- and
postprocessing are:

• Changing the request HTTP method, based on the presence of a header such as
X-HTTP-Method-Override, before it arrives to the controller’s action

• Adding a response header such as Server
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• Capturing and logging diagnostic or business metric data

You can use handlers to short-circuit the pipeline by directly producing an HTTP re‐
sponse, as shown on the right side of Figure 4-2. A typical use case for this behavior is
the immediate return of an HTTP response with a 401 (Unauthorized) status if the
request isn’t properly authenticated.

In the .NET Framework, message handlers are classes that derive from the new HttpMes
sageHandler abstract class, as shown in Figure 4-3.

Figure 4-3. Message handler class hierarchy

The abstract SendAsync method receives an HttpRequestMessage and asynchronously
produces an HttpResponseMessage by returning Task<HttpResponseMessage>. This
method also receives a CancellationToken, following the TAP (Task Asynchronous
Pattern) guidelines for cancellable operations.
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The message handler pipeline organization just described requires a data member to
hold a reference to an inner handler as well as data flow logic to delegate requests and
response messages from a handler to its inner handler. These additions are implemented
by the DelegatingHandler class, which defines the InnerHandler property to connect
a handler with its inner handler.

The sequence of delegating message handlers that constitute the pipeline is defined in
ASP.NET Web API’s configuration object model on the HttpConfiguration.Message
Handlers collection property (e.g., config.MessageHandlers.Add(new TraceMessage
Handler());). The message handlers are ordered in the pipeline according to the con
fig.MessageHandlers collection order.

ASP.NET Web API 2.0 introduces support for the OWIN model, providing the OWIN
middleware as an alternative to message handlers as a way to implement cross-cutting
concerns. The main advantage of OWIN middleware is that it can be used with other
web frameworks (e.g., ASP.NET MVC or SignalR), since it isn’t tied specifically to Web
API. As an example, the new security features introduced in Web API 2.0 and presented
in Chapter 15 are mostly implemented as OWIN middleware and reusable outside of
Web API. On the other hand, message handlers have the advantage of also being usable
on the client side, as described in Chapter 14.

Route Dispatching
At the end of the message handler pipeline, there are always two special handlers:

• The routing dispatcher implemented by the HttpRoutingDispatcher class
• The controller dispatcher implemented by the HttpControllerDispatcher class

The routing dispatcher handler performs the following:

• Obtains the routing data from the message (e.g., when web hosting is used) or
performs the route resolution if it wasn’t performed previously (e.g., when self-
hosting is used). If no route was matched, it produces a response message with the
404 Not Found HTTP status code.

• Uses the route data to select the next handler to which to forward the request, based
on the matched IHttpRoute.

The controller dispatcher handler is responsible for:

• Using the route data and a controller selector to obtain a controller description. If no
controller description is found, a response message with the 404 Not Found status
code is returned.
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• Obtaining the controller instance and calling its ExecuteAsync method, passing the
request message.

• Handling exceptions returned by the controller and converting them into response
messages with a 500 Internal Error status code.

For instance, using the HTTP request of Example 4-1 and the default route configura‐
tion, the route data will contain only one entry with the controller key and process
es value. This single route data entry is the result of matching the http://localhost:50650/
api/processes?name=explorer request URI with the /api/{controller}/{id} route
template.

By default, the routing dispatcher forwards the request message to the controller dis‐
patcher, which then calls the controller. However, it is possible to explicitly define a per-
route handler, as shown in Figure 4-4.

Figure 4-4. Per-route handlers and the route dispatch handler

In this case, the request is forwarded to the handler defined by the route, not to the
default controller dispatcher. Reasons for using per-route dispatching include flowing
the request message through a route-specific handler pipeline. A concrete example is
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the use of distinct authentication methods, implemented in message handlers, for dif‐
ferent routes. Another reason for using per-route dispatching is the substitution of an
alternative framework for the Web API top layer (controller handling).

Controller Handling
The final and uppermost layer in the processing architecture is the controller handling.
This layer is responsible for receiving a request message from the underlying pipeline
and transforming it into a call to a controller’s action method, passing the required
method parameters. It also is responsibile for converting the method’s return value into
a response message and passing it back to the message handler pipeline.

Bridging the message handler pipeline and the controller handling is performed by the
controller dispatcher, which is still a message handler. Its main task is to select, create,
and call the correct controller to handle a request. This process is detailed in Chap‐
ter 12, which presents all the relevant classes and shows how you can change the default
behavior using the available extensibility points.

The ApiController Base Class
The concrete controller that ultimately handles the request can directly implement the
IHttpController interface. However, the common scenario, as presented in the pre‐
vious chapter, is for the concrete controller to derive from the abstract ApiControl
ler class, as shown in Figure 4-5.

It is the job of ApiController.ExecuteAsync to select the appropriate action, given the
HTTP request method (e.g., GET or POST), and call the associated method on the derived
concrete controller. For instance, the GET request in Example 4-1 will be dispatched to
the ProcessesController.Get(string name) method.

Controller Handling | 75



Figure 4-5. Concrete controller deriving from the abstract ApiController class

After the action is selected but before the method is invoked, the ApiController class
executes a filter pipeline, as shown in Figure 4-6. Each action has its own pipeline com‐
posed of the following functionalities:

• Parameter binding
• Conversion from the action’s return into an HttpResponseMessage
• Authentication, authorization, and action filters
• Exception filters
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Figure 4-6. Per-action filter pipeline, parameter binding, and result conversions

Parameter binding
Parameter binding is the computation of the action’s parameter values, used when call‐
ing the action’s method. This process is illustrated in Figure 4-7 and uses information
from several sources, namely:

• The route data (e.g., route parameters)
• The request URI query string
• The request body
• The request headers
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Figure 4-7. Parameter binding

When executing the action’s pipeline, the ApiController.ExecuteAsync method calls
a sequence of HttpParameterBinding instances, where each one is associated with one
of the action’s method parameters. Each HttpParameterBinding instance computes the
value of one parameter and adds it to the ActionArguments dictionary in the HttpAc
tionContext instance.

HttpParameterBinding is an abstract class with multiple derived concrete classes, one
for each type of parameter binding. For instance, the FormatterParameterBinding class
uses the request body content and a formatter to obtain the parameter value.

Formatters are classes that extend the abstract MediaTypeFormatter class and perform
bidirectional conversions between CLR (Common Language Runtime) types and byte
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2. The IHttpActionResult interface was introduced in version 2.0 of Web API.

stream representations, as defined by Internet media types. Figure 4-8 illustrates the
functionality of these formatters.

Figure 4-8. Formatters and conversions between message bodies and CLR objects

A different kind of parameter binding is the ModelBinderParameterBinding class,
which instead uses the concept of model binders to fetch information from the route
data, in a manner similar to ASP.NET MVC. For instance, consider the action in
Example 4-2 and the HTTP request in Example 4-1: the name parameter in the GET
method will be bound to the value explorer—that is, the value for the query string
entry with name key. We’ll provide more detail on formatters, model binding, and val‐
idation in Chapter 13.

Conversion into an HttpResponseMessage
After the action method ends and before the result is returned to the filter pipeline, the
action result, which can be any object, must be converted into an HttpResponseMes
sage. If the return type is assignable to the IHttpActionResult interface2 (presented in
Example 4-3), then the result’s ExecuteAsync method is called to convert it into a re‐
sponse message. There are several implementations of this interface, such as OkRe
sult and RedirectResult, that can be used in the action’s code. The ApiController
base class also includes several protected methods (not shown in Figure 4-5) that can
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be used by derived classes to construct IHttpActionResult implementations (e.g.,
protected internal virtual OkResult Ok()).

Example 4-3. The IHttpActionResult interface
public interface IHttpActionResult
{
    Task<HttpResponseMessage> ExecuteAsync(CancellationToken cancellationToken);
}

If the return isn’t a IHttpActionResult, then an external result converter, implementing
the IActionResultConverter interface as defined in Example 4-4, is selected and used
to produce the response message.

Example 4-4. Result converters: Converting the action’s return into response messages
public interface IActionResultConverter
{
    HttpResponseMessage Convert(
        HttpControllerContext controllerContext,
        object actionResult);
}

For the HTTP request in Example 4-1, the selected result converter will try to locate a
formatter that can read a ProcessCollectionState (i.e., the type returned by the ac‐
tion’s method), and produce a byte stream representation of it in application/json
(i.e., the value of the request’s Accept header). In the end, the resulting response is the
one presented in Example 4-5.

Example 4-5. HTTP response
HTTP/1.1 200 OK
Cache-Control: no-cache
Pragma: no-cache
Content-Type: application/json; charset=utf-8
Expires: -1
Server: Microsoft-IIS/8.0
Date: Thu, 25 Apr 2013 11:50:12 GMT
Content-Length: (...)

{"Processes":[{"Id":2824,"Name":"explorer",
"TotalProcessorTimeInMillis":831656.9311}]}

Formatters and content negotiation are addressed in more detail in Chapter 13.

Filters
Authentication, authorizations, and action filters are defined by the interfaces listed in
Example 4-6, and have a role similar to message handlers—namely, to implement cross-
cutting concerns (e.g., authentication, authorization, and validation).
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Example 4-6. Filter interfaces
public interface IFilter
{
    bool AllowMultiple { get; }
}

public interface IAuthenticationFilter : IFilter
{
    Task AuthenticateAsync(
        HttpAuthenticationContext context,
        CancellationToken cancellationToken);

    Task ChallengeAsync(
        HttpAuthenticationChallengeContext context,
        CancellationToken cancellationToken);
}

public interface IAuthorizationFilter : IFilter
{
    Task<HttpResponseMessage> ExecuteAuthorizationFilterAsync(
        HttpActionContext actionContext,
        CancellationToken cancellationToken,
        Func<Task<HttpResponseMessage>> continuation);
}

public interface IActionFilter : IFilter
{
    Task<HttpResponseMessage> ExecuteActionFilterAsync(
        HttpActionContext actionContext,
        CancellationToken cancellationToken,
        Func<Task<HttpResponseMessage>> continuation);
}

public interface IExceptionFilter : IFilter
{
    Task ExecuteExceptionFilterAsync(
        HttpActionExecutedContext actionExecutedContext,
        CancellationToken cancellationToken);
}

For authorization and action filters, the pipeline is organized similarly to the message
handler pipeline: each filter receives a reference to the next one in the pipeline and has
the ability to perform pre- and postprocessing over the request and the response. Al‐
ternatively, the filter can produce a new response and end the request immediately,
thereby short-circuiting any further processing (namely, the action’s invocation). Au‐
thentication filters operate under a slightly different model, as we will see in Chapter 15.

The main difference between authorization and action filters is that the former are
located before parameter binding takes place, whereas the latter are located after this
binding. As a result, authorization filters are an adequate extension point to insert op‐
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erations that should be performed as early in the pipeline as possible. The typical ex‐
ample is verifying if the request is authorized and immediately producing a 401 (Not
authorized) HTTP response message if it is not. On the other hand, action filters are
appropriate when access to the bound parameters is required.

A fourth filter type, exception filters, is used only if the Task<HttpResponseMessage>
returned by the filter pipeline is in the faulted state; that is, there was an exception. Each
exception filter is called in sequence and has the chance to handle the exception by
creating an HttpResponseMessage. Recall that if the controller dispatcher handler re‐
ceives an unhandled exception, an HTTP response message with a status code of 500
(Internal Server Error) is returned.

We can associate filters to controllers or actions in multiple ways:

• Via attributes, similarly to what is supported by ASP.NET MVC
• By explicitly registering filter instances in the configuration object, using the
HttpConfiguration.Filters collection

• By registering IFilterProvider implementation in the configuration service’s
container

After the HttpResponseMessage instance has left the action pipeline, it is returned by
ApiController to the controller dispatcher handler. Then it descends through the mes‐
sage handler pipeline until it is converted into a native HTTP response by the hosting
layer.

Conclusion
This chapter concludes the first part of the book, the aim of which was to introduce
ASP.NET Web API, the motivation behind its existence, its basic programming model,
and its core processing architecture. Using this knowledge, we will shift focus in the
next part to the design, implementation, and consumption of evolvable Web APIs, using
ASP.NET Web API as the supporting platform.

82 | Chapter 4: Processing Architecture



CHAPTER 5

The Application

Evolve or die.

Up to this point we have discussed the tools that you can use to build Web APIs. We
have discussed the fundamentals of the HTTP protocol, the basics of using ASP.NET
Web API, and how the architectural pieces fit together. This is essential knowledge, but
not the only objective of this book. This book is also about how to build evolvable Web
APIs. This chapter is where we begin to talk about how to create a Web API that can
evolve over a period of years—a long enough span of time that business concerns and
technology will change.

Rather than discuss the issues in abstract scenarios, we will walk the walk and build an
API that demonstrates the concepts we wish to convey. This API will concern a domain
that should be familiar to every developer and is sufficiently realistic that it could be
adopted in real-world scenarios.

Before delving into the details of the domain, we must ensure that evolvability is some‐
thing we are truly prepared to pay for. It does not come for free. In order to achieve
evolvability, where appropriate, we will apply the constraints of the REST architectural
style. It is critical to recognize that we are not attempting to create a “RESTful API.”
REST is not the objective, but rather a means to an end. It is quite possible that we will
choose to violate some of the REST constraints in certain scenarios. Once you under‐
stand the value and costs of an architectural constraint, you can make an informed
decision about whether that constraint should be applied to achieve your goal. Evolv‐
ability is our goal.

Before we can begin designing our Web API, we need to define the building blocks for
our application domain. This is part of the process that is so often ignored when people
attempt to build distributed systems today. When you are building a classic browser-
based application, the solution architecture is largely already defined. HTTP, HTML
pages, CSS, and JavaScript all form the components of the solution. However, with a
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Web API, you are no longer constrained by the choices of the web browser. A web
browser may be only one of many different client components in the distributed system.

With the building blocks defined, Chapter 7 will provide a sample API that assembles
these components into a Web API. These component pieces will be essential knowledge
for building a client application in Chapter 8. By defining the reusable components
independently of the API, we can build the client with the capability to interact with
these components without needing to know the precise shape of the Web API. Hyper‐
media will allow the client to discover the shape of the API and adapt to changes as it
evolves.

Why Evolvable?
What exactly do we mean by an evolvable API? To an extent, evolve is just a fancy word
for change. However, evolution implies a continuous set of small changes that can, over
many iterations, cause the end solution to look unrecognizable to the starting point.

There are a variety of ways that a Web API may need to evolve over the course of its life:

• Individual resources may need to hold more or less information.
• The way individual pieces of information are represented may change. A name or

a data type may be changed.
• Relationships between resources can be added, can be removed, or can have their

cardinality changed.
• Completely new resources may be added to represent new information in the API.
• Resources may need new representations to support different types of clients.
• New resources may be created to provide access to information with a finer or

coarser granularity.
• The flow of processes supported by the API may change.

For many years, the software development industry attempted to follow the lead of more
traditional engineering practices when it came to managing change. Conventional wis‐
dom stated that change early in a product’s development was many times less expensive
than a change that occurred at later stages in its development. The solution was often
to strictly manage change and attempt to limit it by performing extensive up-front
planning and design work. In recent years, the rise of agile software development prac‐
tices has taken us on a different path, where change is accepted as part of the process.
Embracing change in small iterations allows a software system to evolve to meet the
needs of its users. It is not uncommon to hear of websites that release new versions of
their software many times a day.
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However, with Web APIs, where the plan is to allow external teams to develop their own
software to consume the API, our industry has regressed to its old habits. Very often
the mindset is that we need to plan and design the API so we can get it right, because if
we make changes to the API that break the software, our customers will be unhappy.
There are many examples of well-known API developers who have introduced a v2 API
that required client applications to do lots of rework to migrate to the new version.

SOAP is Honest at Least
For all of the problems that people have had with SOAP-based solutions, it was at least
honest in trying to control and manage change. SOAP was explicit in defining a precise
contract between the consumer and provider of the API. It is the waterfall approach to
integration. Do the work up front so that you can avoid change. This is in contrast to
the many examples today of people developing systems under the banner of REST,
hoping that it has some magical properties that make managing change easy. Unfortu‐
nately, they are just deferring the pain.

Barriers to Evolution
There are a few factors that impact the difficulty of dealing with change. One of the
biggest factors is who is impacted by the change. It is very common for the consumers
of the API to be a different team than the producers of the API. In addition, the con‐
suming team often belongs to a different company than the producing team. In fact, it
is likely that there are many consumers from many different companies. Implementing
a breaking change can make lots of customers unhappy.

Even when consumer and producer applications are managed by the same team, there
can be constraints that prevent the client and server from being deployed simultane‐
ously. When client code is deployed onto a large number of clients, it can be tricky to
synchronize the updates of clients and servers. When clients are installed on locked-
down machines, there can be additional complications. Sometimes forcing client up‐
dates just creates a bad user experience. If a user wishes to use a client application but
before he can he must apply an update, he might get frustrated. Most popular auto-
updating client software applications download new versions in the background while
they are running and apply on the next restart. This requires the server software to be
able to continue to support the old version of the client for at least a short period of
time.

One of the challenging things about changing software is that some changes are really
easy and have a very low impact, whereas other changes can affect many parts of the
system significantly. Identifying what kind of change you are trying to perform is critical.
Ideally, we should be able to compartmentalize our software so that we can separate the
pieces that can be changed with minimal impact from those that have the potential for
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significant impact. As a simple example, consider making a change to the HTML spec‐
ification versus adding a new page to a website. Changing HTML might require every‐
one to update their web browser, which is a mammoth endeavor, while adding a new
web page to a site will not have any impact on web browsers. The web architecture has
intentionally made this division to allow the world of websites (servers) to evolve
without users having to continually update the web browser (clients).

Change needs to be managed. It requires control and coordination. Any steps we can
take to facilitate change over the long term will easily pay for themselves many times
over. However, building evolvable systems is not free. There are definitely costs involved.

What Is the Cost?
In order to achieve evolvability, the REST constraints prevent our client applications
from making certain assumptions. We cannot allow the client to know in advance about
the resources that are available on the server. They must be discovered at runtime based
on a single entry point URL.

Once the client has discovered the URL for a resource, it cannot make any assumptions
about what types of representations might be returned. The client must use metadata
returned in the response to identify the type of information that is being returned.

These limitations require building clients that are far more dynamic than a traditional
client/server client. Clients must do a form of “feature detection” to determine what is
possible, and they must be reactive to the responses that are returned.

A simple example of this is a server API that returns an invoice. Assuming a client knows
how to render plain-text, HTML, and PDF documents, it is not necessary for the server
to define in advance what format it will return. Maybe in the first version of the software
a simple plain-text invoice is returned. Newer versions of the server might implement
the ability to return the invoice as HTML. As long as a mechanism exists to allow the
client to parse the response and identify the returned type, the client can continue
working unchanged. This notion of messages that contain metadata that identifies the
content of the message is called self-descriptive messaging.

Additionally, when defining API specifications you should specify the minimum detail
necessary, not every detail. Apply Einstein’s wisdom of “Everything should be as simple
as possible, but not simpler.” Overconstraining an API will increase the chances of
change impacting larger parts of the system.

Examples of overspecifying include:

• Requiring pieces of data to be provided in a certain order, when the order is not
important to the semantics of the message

• Considering data as required when it is needed only under certain contexts
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• Constraining interactions to specific serializations of platform-defined types

The following two sidebars describe real-life scenarios that demonstrate how being
overly prescriptive can have a negative impact on the outcome.

The Wedding Photographer
In this real-world scenario, you’ll see how contracts can be written to adapt to change.
Compare the following two sets of instructions from contracts provided by a bride to
her wedding photographer:

1. We would like to have the following photos:

• Bride in and outside church
• Bride and groom on church steps
• Bride and groom by large oak tree in front of church
• Bride with bridesmaids in front of duck pond
• Groom and best man by the limo

2. We would like some photos that can be given to family members with us and their
relatives. We also would like other, more personal photos for us to decorate our
house. We would like some photos to be black and white to fit the decor of our
living room. We prefer more outdoor photos than indoor.

The contracts differ in that the first is very prescriptive but provides no explanation of
intent. The second is more flexible but still ensures that the customer’s needs are met.
It allows the photographer more creative freedom, which will help him adapt when the
wedding day comes and he finds the large oak tree has been chopped down, or the limo
is parked on a busy street where background traffic cannot be avoided.

In the following example, instead of simply stifling creativity and producing an inferior
product, the result completely fails to satisfy the original requirements.

The Will with Intent
Change is inevitable, and making precise decisions today may invalidate them in the
future when circumstances change. Consider the mother of four who is writing her will.
She loves her children dearly and wishes to help provide for them when she passes, as
none of them are particularly comfortable financially. Unfortunately, Johnny has a gam‐
bling problem and she does not want to throw money away. She chooses to write Johnny
out of the will and distribute her wealth evenly among the other three. Sadly, she has a
stroke and falls into a coma for several years before passing away. In that time, Johnny
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quits gambling and starts to clean up his act. Billy wins $10 million in the lottery and
becomes estranged from his family. Jimmy loses his job and is struggling to make ends
meet. The will specified by the mother no longer satisfies her intent. Her intent was to
use her money to help her children as best as possible. Billy doesn’t need the money, but
Johnny could really use it to help him get back on his feet. But the will is very precise
on how the money should be shared. By choosing wording that would provide more
flexibility to the executor of the will to meet her intent, the mother could have made a
significantly different impact.

We often see similar results in software project management, where customers and
business analysts try to use requirements to precisely define their envisioned solution,
instead of capturing their true intent and letting the software professionals do what they
do best. The contracts we use when building distributed systems must capture the intent
of our business partners if they are going to survive over the long term.

The combination of runtime discovery, self-descriptive messaging, and reactive clients
is not the easiest concept to grasp or implement, but it is a critical component of evolv‐
able systems and brings flexibility that far outweighs the costs.

Why Not Just Version?
The traditional approach to dealing with breaking changes in APIs is to use the notion
of versioning.

From the perspective of developing evolvable systems, it is useful to consider versioning
as a last resort, an admission of failure. Assigning a v1 to your initial API is a procla‐
mation that you already know it cannot evolve and you will need to make breaking
changes in your v2. However, sometimes we do get it wrong. Versioning is what we do
when we have exhausted all other options.

The techniques discussed in this book are to help you avoid the need to create versions
of your API. However, if and when you do need to version some piece of your API, try
to limit the scope of that declaration of failure.

Do not interpret this guidance as saying you must do “big design up front” and get
everything right the first time. The intent is to encourage an attitude of minimalism.
Don’t specify what you don’t need to; don’t create resources you don’t need. Evolvable
APIs are designed to change so that when you identify new things that must be added
you can do it with minimum effort.

Versioning involves associating an identifier to a snapshot of an API, or some part of
an API. If changes occur to the API, then a new identifier is assigned. Version numbers
enable coordination between client and server so that a client can identify whether it
can communicate with the server. Ideas like semantic versioning have created ways to
distinguish between changes that are breaking and those that are nonbreaking. There

88 | Chapter 5: The Application



are several ways to use versioning within evolvable systems with varying degrees of
impact severity.

Versioning can be done:

• Within the payload (e.g., XML, HTML)
• With the payload type (e.g., application/vnd.acme.foo.v2+xml)
• At the beginning of the URL (e.g., /v2/api/foo/bar)
• At the end of the URL (e.g., /api/foo/bar.v2)

What Changes Are Considered Breaking?
It would make life really easy if we could classify API changes into breaking and non‐
breaking buckets. Unfortunately, context plays a large role in the process. A breaking
change is one that impacts the contract, but without any hard and fast rules of what API
contracts look like, we are no further ahead. In the REST architectural style, contracts
are defined by media type and link relations, so changes that don’t affect either of these
should be considered nonbreaking, and changes that do affect these specifications may
or may not be breaking.

Payload-based versioning
One of the most important characteristics of the web architecture is that it promotes
the concept of payload format into a first-class architectural concept. In the world of
RPC, parameters are simply an artifact of the procedural signature and do not stand
alone. An example of this is HTML. HTML is a largely self-contained specification that
describes the structure of a document. The specification has evolved hugely over the
years. The HTML-based Web does not use URI-based versioning or media type ver‐
sioning. However, the HTML document does contain metadata to assist the parser in
interpreting the meaning of the document. This type of versioning helps to limit the
impact of version changes to the media type parser codebase. Parsers can be created to
support different versions of wire formats, making support for older document formats
fairly easy. It remains a challenge to ensure that new document formats don’t break old
parsers.

Versioning the media type
In recent years, the idea of versioning the media type identifier has become popular.
One advantage of this approach is that a user agent can use the Accept header to declare
which versions of the media type it supports. With well-behaving clients you can in‐
troduce breaking changes into a media type without breaking existing clients. The ex‐
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isting clients continue asking for the old version of the media type, and new clients can
ask for the new version.

Opaque Identifier
From the perspective of HTTP, what is being done is not really versioning at all—it is
simply creating a brand new media type. As far as HTTP is concerned, media type
identifiers are opaque strings, so no meaning should be inferred from the characters in
the string. So, in effect, application/vnd.acme.foo is no more related to application/
vnd.acme.foo.v2 as it is to text/plain. The identifiers are different; therefore, the
media types are different. The fact that the parsing library for the two versions might
be 99% similar is an implementation detail.

A downside to using media types to version is that it exacerbates one of the existing
problems with server-driven negotiation. It is not unlikely that a service may use many
different media types to expose a wide variety of content. Requiring that a client declare,
on every request, all of the media types that it is capable of rendering adds a significant
amount of overhead to each request. Adding versions into the mix compounds that
problem. If a client supports v1,v2, and v3 of a particular media type, should all of them
be included in an Accept header in case the server is only capable of rendering an old
version? Some user agents have started to take the approach where they only send a
subset of media types in the Accept header, depending on the link relation being ac‐
cessed. This does help reduce the size of the Accept header, but it introduces an addi‐
tional complexity where the user agent must be able to correlate link relations to ap‐
propriate media types.

Versioning in the URL
Versioning in the URL is probably the most commonly seen approach in public APIs.
To be more precise, it is very common to put a version number in the first segment of
a URL (e.g., http://example.org/v2/customers/34). It is also the approach most heavily
criticized by REST practitioners. The objection is usually related to the fact that by
adding URLs with a new version number, you are implicitly creating a duplicate set of
resources with the new version number while many of those resources may not have
changed at all. If URLs have previously been shared, then those URLs will point to the
old version of the resource rather than the new version. The challenge is that sometimes
this is the desired behavior and other times it is not. If a client is capable of consuming
the new version, it would prefer the new one instead of the old version that it book‐
marked. If the resource with the new version is actually identical to old version, then it
introduces a new problem where there are two distinct URLs for the same resource.
This has numerous downsides when you are trying to take advantage of HTTP caching.
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Caches end up storing multiple copies of the same resource, and cache invalidation
becomes ineffective.

An alternative approach to URL versioning is appending the version number near the
end of the URL (e.g., http://example.org/customer/v2/34). This allows individual re‐
sources to be versioned independently within an API and eliminates the problem of
creating duplicate URLs for identical resources. Clients that construct URLs have a
much more difficult time consuming this type of versioned URL, because it is not as
simple as just changing the first path segment in all request URLs. Hypermedia-driven
clients can’t even take advantage of this type of versioning because URIs are opaque to
them. New resource versions must be identified via a versioned link relation to be ac‐
cessible to this type of client.

Versioning of APIs is a difficult topic that has many pitfalls. Making the effort to avoid
versioning as much as possible will likely provide many long-term benefits.

Walking the Walk
So far in this chapter, we have discussed in general the pros and cons to developing
evolvable applications. At many points in the development of an evolvable distributed
application, you’ll have choices to make and the right answer is frequently “it depends.”
There is no way, in any reasonable number of pages, to consider every possibility and
every outcome; however, there is value in demonstrating a particular set of choices to
a particular set of circumstances. In the remainder of the chapter, we will focus on a
specific application that presents common challenges, and we will consider the options
and make a decision. In no way are we suggesting the choices we will make in the
following chapters are the best for every scenario, but they should be illustrative of the
types of decisions and choices that you will need to make while building an evolvable
API.

Application Objectives
It is always challenging to pick a domain for a sample application for demonstration
purposes. It should be realistic but not to the point of getting bogged down in domain
details. It should be complex enough to provide a wide range of scenarios but not so
large that the architectural guidance gets lost in the implementation details. To eliminate
the need for you to learn domain specifics, we chose a domain that software developers
are already familiar with: issue tracking. It is an area in which we have all seen a variety
of implementations of both client and server. It is naturally distributed because its pri‐
mary focus is communicating and sharing information among different team members.
There are many use cases that surround the lifecycle of an issue. There are many different
types of issues that have their own set of distinct states. Issues have a wide variety of
metadata associated with them.
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Goals
We want to define the types of information that we believe fall within the domain of
issue tracking. We wish to:

• Define the minimal set of information required to represent an issue.
• Define a core set of information that is commonly associated with issues.
• Identify relationships between the information in our system.
• Examine the lifecycle of an issue.
• Identify the behavior associated with an issue.
• Classify the types of aggregations, filtering, and statistics that are done on issues.

This is not an attempt to exhaustively define the ultimate, all-encompassing issue sche‐
ma. Our objective is not to define functionality for every possible scenario in the domain
of issue tracking, but to identify a common set of information and terminology that
delivers value to people who wish to build some form of issue tracking application,
without limiting the scope of those applications. What we are defining will evolve.

When you look at different applications that attempt to address the same domain, you
will often find they have taken slightly different approaches to the same problem. We
are looking to identify those differences where it doesn’t matter which option is chosen;
let’s just pick one, or enable both. When we eventually distill this domain down into
media type specifications, link relations, and semantic profiles, we should be left with
a common ground that enables a degree of interoperability without limiting individual
applications from providing unique features.

Opportunity
The domain of issue tracking is ripe for improvement. There are dozens of commercial
and open source applications that address this domain, and yet they all use proprietary
formats for interacting between server and client components. Issue data is locked in
proprietary data stores that are tied to the application that created that data. We are
limited to using client tools that were designed specifically for a particular issue data
store. Why can’t I use my favorite issue management client to manage both the work
items defined in my Bitbucket repositories and in my GitHub repositories? Why do I
even need multiple stores? No one ever considered writing a web browser that is specific
to Apache or IIS, so why do we insist on coupling client and server applications in other
domains that are focused on distributed data?

Unfortunately, the type of sharing and reuse that the web architecture enables through
the reuse of standard media types does not appear to be in the best interests of com‐
mercial organizations. Usually, it requires open source efforts to get the initial momen‐
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tum going before commercial organizations take notice and realize that integration and
interoperability can actually be major benefits to commercial software.

Information Model
Before we can begin to develop web artifacts like media types, link relations, or semantic
profiles, we must have a clearer understanding of the semantics that we need to com‐
municate across the Web.

At its most basic, an issue could be described in just a short string of text. For example,
“The application fails when clicking on button X in screen Y.” Additionally, it is often
desirable to include a more detailed description of the issue.

Consider the following extremely simple definition:

Issue
  Title
  Description (Optional)

This definition is potentially sufficient for someone to take this issue and resolve it.
Although the issue contains no information about who created it or when, it is possible
to capture that information from available ambient information when the request to
create the issue is made. Having this extremely minimalist representation of an issue
provides a very low barrier of entry that can later be evolved. It is good for getting a
working application for demo purposes, and it is also useful for low-power clients like
phones. There is nothing to stop someone from later using a more powerful client to
fill in additional data.

Subdomains
Before charging ahead and implementing this minimal representation, let’s get a better
understanding of the larger set of data that can be associated with an issue. For organ‐
izational purposes I have broken down the information into four subdomains: descrip‐
tive, categorization, current state, and historical.

Descriptive
The descriptive subdomain includes the information we already discussed such as title
and description, but also environmental information, such as software version, host
operating system, hardware specifications, steps to reproduce, and screen captures. Any
information used to provide precision about the situation that produced the issue will
fall into this subdomain. One important characteristic of this information is that it is
primarily just human readable. It does not tend to affect the issue workflow or impact
any kind of algorithms.
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Categorization
These pieces of information are used to help deal with sets of issues in meaningful
groups. Attributes that belong to a certain predefined domain of values can be attached
to an issue for the purpose of classifying issues for processing. Examples of this type of
information include priority, severity, software module, application area, and issue type
(defect, feature, etc). This information is used for searching, filtering, and grouping and
is often used to dictate application workflow. Generally, this information is specified
early on in the issue lifecycle and does not change unless information was specified
erroneously.

Current state
An issue will generally have a set of attributes that define its current state. This includes
information such as the current workflow state, the person actively assigned to the issue,
hours remaining, and percent complete. This information will change numerous times
over the life of an issue. It can also be used as classification attributes. The current state
of an issue may also be annotated with textual comments.

Historical
Historical information is usually a record of an issue’s current state at a prior point in
time. This information is generally not important for the processing of the issue, but
may be useful for analytics of past issues, or investigating the history of an individual
issue.

Related Resources
All of these information attributes that we mentioned will likely be represented in one
of two ways—either by a simple serialization of the native data type (e.g., strings, dates,
Boolean), or via an identifier that represents another resource. For example, for iden‐
tifying the people who are involved, we might have IssueFoundBy and
IssueResolvedby.

We could simply include a string value, but it would be much more valuable to have a
resource identifier, as it is likely that the users of the issue tracking system would be
exposed as resources. The natural choice for a resource identifier is a URL. By using a
URL, we give the client software the opportunity to discover additional information
about the person involved by dereferencing the URL. This separation of issue attributes
and person attributes into two distinct resources is useful also because the information
contained in those two resources has very different lifetimes. The volatility of the data
is different and therefore will likely have a different caching strategy.

It is likely that we will not want to display a URL to a human who is viewing the issue
representation. We address this by way of a link. Usually, we do not embed URLs directly
into representations, as there is often other metadata that is associated with the URL. A
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Link is a URL with its associated metadata, and one standardized piece of metadata is
a Title attribute. The Title attribute is intended to provide a human-readable version
of the URL. This gives us the best of both worlds: an embedded, human-readable de‐
scription and a URL that points to a distinct resource that contains additional infor‐
mation about the related person.

Here is an example of a related resource:

<resource>
    <Title>App blows up</Title>
    <Description>Pressing three buttons at once causes crash</Description>
        <links>
                <Link   rel="IssueFoundBy"
                                title="Found by"
                                href="http://example.org/api/user/bob"/>
        </links>
</resource>

Attribute Groups
Sometimes it is useful to group attributes together. This can help to make a represen‐
tation easier to read. The groups can sometimes be used to simplify client code when a
set of attributes can be processed as a whole. Perhaps a user agent does not want to deal
with environmental attributes and therefore an entire group can be ignored. It is also
possible to use attribute groups to introduce a conditional requirement for mandatory
information. For example, if you include group X, then you must include attribute Y in
the group. This allows us to support a very minimal representation but still ensure that
key information is provided if a particular aspect of the issue is to be included. One
specific example of this might be that when you include a history record that specifies
the state of an issue at an earlier point in time, you must also provide the date and time
attribute.

There is, however, a danger to having groups and using those groups within a media
type. Deciding that an attribute has been put in a wrong group and moving it to a new
group may end up being a breaking change, so it is important to be cautious with the
use of groups.

Here is an example of an attribute group:

<resource>
    <Title>App blows up</Title>
    <Environment>
        <OperatingSystem>Windows ME</OperatingSystem>
        <AvailableRAM>284MB</AvailableRAM>
        <AvailableDiskSpace>1.2GB</AvailableDiskSpace>
    </Environment>
</resource>
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Collections of Attribute Groups
Attribute groups can be used when you want to represent a multiplicity in parts of a
representation. Issues may have documents attached to them. Those documents would
most likely be represented as links, but there may be additional attributes associated
with the documents that can be grouped together. This allows multiple groups of these
document attributes to be included in a single representation while maintaining the
relationship between the document and its related attributes.

The following is an example of an attribute group collection:

<resource>
    <Title>App blows up</Title>
    <Documents>
        <Document>
                <Name>ScreenShot.jpg</Name>
                <LastUpdated>2013-11-03 10:15AM</LastUpdated>
                <Location>/documentrepository/123233</Location>
        </Document>
        <Document>
                <Name>StepsToReproduce.txt</Name>
                <LastUpdated>2013-11-03 10:22AM</LastUpdated>
                <Location>/documentrepository/123234</Location>
        </Document>
    </Documents>
</resource>

Information Model Versus Media Type
So far, we have talked about the information model that surrounds the domain of issue
tracking. We have discussed, in abstract, how these pieces of information can be rep‐
resented, grouped, and related (Figure 5-1). I have avoided the discussion of specific
formats like XML and JSON because it is important to understand that the definition
of the information model is independent of specific representation syntax. In the next
chapter, when we talk about media types we will address the physical mapping of our
conceptual model to the syntax of real media types and their particular formats.
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Figure 5-1. Information model

There are several things to consider in relation to the reusability of this information
model. Although it is quite extensive in its listed capabilities, the majority of this infor‐
mation is optional. This allows us to use the same model in both the simplest scenarios
and the most sophisticated. However, in order to achieve any kind of interoperability
we must draw a line in the sand and give specific names to attributes. Fortunately, what
we are defining is purely an interface specification. There is no requirement for appli‐
cations to use these same names when they persist data to their data stores, nor is it
necessary for them to use those names in the client application’s user interface. As long
as the semantic meaning of that data is accurately portrayed to the user, all is good.
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When defining the media types we must consider what happens when an application
wishes to include semantics that our information model currently does not support.
Extensibility is an important goal; however, for this application, building interoperable
extensibility is out of scope and so will not be part of the information model. That doesn’t
mean we can’t allow media types to define their own extensibility options that will allow
specific clients and servers to deal with extended data.

Collections of Issues
In addition to the representation of an issue, our applications will probably need to be
able to represent sets of issues. These are most likely to be representations returned from
some kind of query request. In the next chapter, we will discuss the relative merits of
building new media types to represent a set of issues versus reusing the list capabilities
of existing media types and the variety of hybrid approaches that exist.

Resource Models
Another major piece of application architecture to consider when building Web APIs
are the resources exposed. It is not my intent to predefine a set of resources that must
exist with an issue tracking API. One of the major differences between an evolvable API
and and RPC/SOAP API is that the available resources are not part of the contract. It is
expected that the client will discover resources, and the capabilities of the client will be
limited to the resources that it can discover.

I do want to discuss the types of resources that an API might expose so that we have
some ideas to work with when exploring the types of media types that our client needs
to support. It is always good to start with a minimal set of resources. Resources should
be quick and easy to create in a system, so as we gain real experience with consumers
using the service we can easily add new resources to meet additional requirements.

Root Resource
Every evolvable Web API needs a root resource. Without it, clients just cannot begin
the discovery process. The URL of the root resource is the one URL that cannot change.
This resource will mainly contain a set of links to other resources within the application.
Some of those links may point to search resources.

Search Resources
The canonical example of a search resource is an HTML form that has an input box and
does a GET using the input value as a query string value. Search resources can be sig‐
nificantly more sophisticated than this, and sometimes can be completely replaced by
the use of a URI template. Search resources will usually contain a link that returns some
kind of collection resource.
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Collection Resources
A collection resource normally returns a representation that contains a list of attribute
groups. Often each attribute group will contain a link to a resource that is being repre‐
sented by the information in the attribute group.

An issue tracking application is likely to predefine a large number of collection resour‐
ces, such as:

• Active issues
• Closed issues
• List of users
• List of projects

Often a very large number of collection resources can be defined for a Web API by using
search parameters to produce filtered collections. It is important that when we use the
term resource we understand the distinction between the concept and the underlying
implementation that generates the representation. If I create an IssuesController that
allows a client application to search on subsets of issues, the URLs /issues?found‐
By='Bob’ and /issues?foundBy='Bill’ are two different resources even though it is likely
that the exact same code generated the two representations. To my knowledge, there is
no term in common usage that describes the shared characteristics of a set of resources
that represent different instances of the same concept. From this point on, I will use the
term resource class to identify this scenario.

Item Resources
The bulk of the information retrieved via the API will be communicated via item re‐
sources. An item resource provides a representation that contains some or all of the
information belonging to a single instance of some information model concept. It is
likely that we will need to support multiple different levels of details. Considering the
example of an issue, some clients may only want the descriptive attributes. Other clients
may want all the details that could be edited. 

There is a wide variety of subsets of information that a client may need for a particular
use case. This is one reason why it is important that, for any issue-related media type
that we might define, we remain very flexible regarding what information may or may
not be included. Just because a representation of an issue resource does not contain the
details of the issue history does not mean the information does not exist. This is where
the idea of generating resource representations based on domain object serialization
falls apart. An object has just one class definition; you cannot pick and choose which
parts of the object you wish to serialize based on context with a generic object serializer.
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When you are determining the appropriate subsets of attributes to include in a resource,
it is important to consider several factors. Large representations have the advantage of
requiring fewer roundtrips. However, when only a small amount of data is required,
there will be some wasted bandwidth and processing time. Also, large representations
have a higher chance of containing attributes with different levels of volatility. Including
descriptive attributes in the same resource as current state attributes, we may find that
the we cannot cache the resource representation for as long as we might like because
the current state information changes frequently. Using data volatility as a guide for
segregating data into distinct resources can be a very useful technique. The downside
to breaking a single concept into multiple resources is that it can make doing atomic
updates using a PUT more difficult, and it introduces more complexity during cache
invalidation.

Having more, smaller resources means more links and more representations to manage,
but it means there is more opportunity for reuse.

There is no formulaic approach for determining the best granularity for resources. It is
essential to consider the specific use cases and the various factors we have just discussed
and choose the most appropriate resource sizes for the situation.

Figure 5-2 shows one particular resource model that an issue tracking service might
implement. Each of these resource or resource classes will be exposed at a particular
URL by the service. We have chosen not to show what those URLs will be because they
are not relevant to our design, nor should they be relevant to the client.

All too often, developers try to do “design by URL” when building an API. There are a
number of problems with this approach. Designing by URL steers people to try to define
their application as a hierarchial data structure rather than the application workflow/
state machine that should be being modeled. Limitations of the chosen implementation
framework’s ability to parse, process, and route URLs will tend to constrain the system
design even further. Designing by URL also encourages developers to try to create a
consistency in their URI structure that is completely unnecessary and potentially con‐
straining to the design. Identifying resources and the relations between them can be
completely independent of URI structure, and later on a URI space can be mapped to
the resources. This is a unique benefit of systems where clients are hypermedia driven.
When clients construct URIs based on knowledge of the server’s URI space, the need
for a uniform URI space with a significant structure becomes pressing.
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Figure 5-2. Resource model

Any client who understands the media types and link relations that we will be discussing
in the next chapter will be able to consume this service without any prior knowledge of
any of these resources other than the root.”

Resource Models | 101



Conclusion
In this chapter, we have considered the conceptual design of our application. We re‐
viewed why we would want to build a system that can evolve and the costs of that choice.
We identified the building blocks of our design and reviewed the application domain.

Fundamentally, this is a distributed application and will require communication be‐
tween different systems. To implement this in a manner that will successfully evolve,
we need to define the contracts that will be used to convey application semantics between
the system components. This will be the focus of the next chapter.
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CHAPTER 6

Media Type Selection and Design

A good contract lets friends stay friends.

It is common to hear developers explain how REST-based systems are better than al‐
ternatives for building Web APIs because they are simpler. The lack of contracts, such
as WSDL (Web Service Description Language), is often cited as one of the reasons for
the simplicity.

However, when building distributed systems, you cannot avoid coming to some kind
of prearranged agreement between components. Without some form of shared knowl‐
edge, those components cannot interact in a meaningful way.

This chapter is about the types of contracts used in web architecture, the process of
selecting the best contracts to meet our needs, and identifying where it’s necessary to
create new contracts.

Self-Description
One of the key concepts around designing contracts is self-description. Ideally, a mes‐
sage should contain all the information the recipient needs to understand the intent of
the sender, or at least provide references to where the necessary information can be
found.

Imagine you receive a letter in the mail that has the numbers 43.03384,–71.07338 written
on it. That letter provides you with all the data that you need to achieve a very specific
goal, but you are missing all of the context required to do anything useful with it. If I
were to tell you that the pair of numbers were latitude and longitude coordinates, then
you would have some understanding of their meaning. Obviously, I am assuming that
you either already understand that coordinate system or are capable of searching for
information on how to use it. Self-descriptive does not mean that the message needs to
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actually include a description of the longitude/latitude system. It simply needs to ref‐
erence it in some way.

Knowing that the information included in the letter is coordinates is only half the story.
What are you supposed to do with those coordinates? More context is needed for you
to know what you should do with that information. If you see that the letter’s return
address is “Great Places To Drink, PO Box 2000, Nevada,” you have a hint that maybe
the coordinates are the location of a recommended pub.

Types of Contracts
In the web world, media types are used to convey what a resource represents, and a link
relation suggests why you should care about that resource. These are the contracts that
we can use when building evolvable systems. These pieces of the architecture represent
the shared knowledge. These are the parts of the system that we have to be careful to
design well, because when they change, they could break components that depend on
them.

Media Types
Media types are platform-independent types designed for communication between dis‐
tributed systems. Media types carry information. How that information is represented
is defined in a written specification.

Unfortunately, the potential for media types is woefully underused in the world of Web
APIs. The vast majority of Web APIs limit their support to application/xml and ap
plication/json. These two media types have very little capability to carry meaningful
semantics and often lead people to use out-of-band knowledge to interpret them. Out-
of-band knowledge is the opposite of self-descriptive. To return to our letter example,
if the “Great Places To Drink” company were to tell you ahead of your receiving the
letter that the numbers written on your letter would be geographic coordinates, that
would be considered out-of-band knowledge. The information needed to interpret the
data is communicated in some way separate from the message itself. In the case of generic
types like application/xml and application/json, it requires us to communicate the
semantics of the message in some other way. Depending on how we do that, it can make
evolving a system much more difficult because it requires communicating changes to
the system in that out-of-band manner. When out-of-band knowledge is used, clients
assume that the server will send certain content and therefore they are unable to auto‐
matically adapt if a server returns something different. The result is that server behavior
becomes locked down by the existence of clients. This can become a major inhibitor of
change.
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Primitive Formats
This section includes examples that show how the same set of data is communicated
through different media types.

The media type application/octet-stream, shown in Example 6-1, is about as basic
a media type as you can get. It is simply a stream of bytes. User agents who receive this
media type usually cannot do anything with the payload other than allow the user to
save the bytes in a file. There are no application semantics defined at all.

Example 6-1. A stream of bytes
 GET /some-mystery-resource
 200 OK
 Content-Type: application/octet-stream
 Content-Length: 20

 00 3b 00 00 00 0d 00 01 00 11 00 1e 00 08 01 6d 00 03 FF FF

In Example 6-2, media type text/plain tells us that the content can be safely rendered
directly to a end user, who will be able to read the data. In its current form, the example
body does not provide any hints as to what the data is for; however, there is nothing to
stop a server from including a paragraph of prose in the body with an explanation of
the information.

Example 6-2. Human readable
 GET /some-mystery-resource
 200 OK
 Content-Type: text/plain
 Content-Length: 29

 59,0,13,1,17,30,8,365,3,65535

Who Knows My Business?
In the last 50 years of computing, we have played distributed ping-pong with the se‐
mantics of our business applications. In the days of the mainframe, the server knew
everything about your data and the client was a terminal that knew nothing more than
how to display characters and detect keypresses.

In the 80s and early 90s, with the rise of personal computers and local area networks,
the clients became king. Shared data was still stored on a file server, but as far as the
server was concerned it was just dealing with files, rows, columns, and indexes. All the
intelligence was on the client.

Toward the end of the 90s client/server databases gained popularity due to the fact that
PC-based networked applications were being stretched to the limits of their extremely
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chatty architecture, and client/server databases promised huge scalability improve‐
ments.

Client/server databases had limited success in driving rich client applications—not be‐
cause of any technical problem but because many developers had insufficient training
and tried to apply the techniques used for ISAM (indexed sequential access method)
databases on client/server databases. This problem was exacerbated by vendors pushing
client/server databases as a “drop-in replacement” to achieve scalability.

The new millennium saw the rise of the web application. Web applications worked well
because they moved the application workflow and business logic onto a server that lives
close to the data. This addressed the problem of chatty PC-based networks and avoided
some of the concurrency problems that were tricky to handle using client/server data‐
bases.

In recent years, JavaScript has gone from augmenting HTML-based web experiences to
creating and controlling web experiences. We are seeing a trend of moving application
workflow and logic back onto the client but within the runtime environment of a web
browser.

If we are to move logic back to the client, it is important we understand why this has
failed in the past, so as to avoid repeating the mistakes of our predecessors.

Hypermedia-enabled media types are a very important part of this critical architectural
decision because they are able to carry both workflow and application semantics across
the wire and allow a more intelligent distribution of workload between client and server.

In Example 6-3, the media type text/csv provides some structure to the information
being returned. The data model is defined as a set of comma-separated values that are
then broken down into lines of (usually) structurally similar data. We still have no idea
what the data is, but we could at least format the data for presentation to a user, assuming
the user knows what she is looking at.

Example 6-3. Simply structured data
 GET /some-mystery-resource
 200 OK
 Content-Type: text/csv
 Content-Length: 29

 59,0
 13,1
 17,30
 8,365
 3,65535
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Popular Formats
Consider Example 6-4.

Example 6-4. Markup
GET /some-mystery-resource
 200 OK
 Content-Type: application/xml
 Content-Length: 29

 <root>
        <element attribute1="59" attribute2="0"/>
        <element attribute1="13" attribute2="1"/>
        <element attribute1="17" attribute2="30"/>
        <element attribute1="8" attribute2="365"/>
        <element attribute1="3" attribute2="65535"/>
 </root>

In this particular case, returning the content as XML did not add any more semantics
than the text/csv format did. We still just have five pairs of digits, but it does provide
a place to name the pieces of data. However, the meaning of those names is not being
defined in the specification for application/xml, so any client that tries to assign
meaning to those names is depending on out-of-band knowledge and therefore intro‐
ducing hidden coupling. Later in this chapter, we will discuss other ways to layer se‐
mantics on top of generic media types without creating hidden coupling.

For more complex scenarios, application/xml can be useful to represent hierarchies
of data and allow blocks of text to be marked up with additional data. However, we still
have the problem that application/xml provides limited ways to assign semantics.

As far as communicating semantics, application/json (shown in Example 6-5) has
even less capability than application/xml. The advantage of consuming JSON within
a web browser environment is that we can download JavaScript code that can apply
semantics to the document. This allows clients and servers to evolve simultaneously,
but it has the disadvantage of limiting clients to those that can support a JavaScript
runtime. This also impacts the ability for intermediary components to interact with the
message, thereby limiting the benefits of the HTTP layered architecture.

Example 6-5. Object serialization
GET /some-mystery-resource
 200 OK
 Content-Type: application/json
 Content-Length: 29

 { "objects" : [
        {"property1"="59", "property2"="0"},
        {"property1"="13", "property2"="1"},
        {"property1"="17", "property2"="30"},
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        {"property1"="8", "property2"="365"},
        {"property1"="3", "property2"="65535"}
    ]
 }

If generic media types are at one end of a continuum of media types, then the next
example is at the opposite end. In this case, we have defined a new media type that is
specific to our particular application and has exactly the semantics that the server un‐
derstands. To deliver this content, we need to write a specification for the media type,
make it publicly available on the Internet, and preferably register the media type with
IANA, so that it can easily be found by a developer who wishes to understand the
meaning of the representation he just received.

New Formats
Now let’s consider Example 6-6.

Example 6-6. Service-specific format
 GET /some-mystery-resource
 200 OK
 Content-Type: application/vnd.acme.cache-stats+xml
 Content-Length: ??

 <cacheStats>
        <cacheMaxAge percent="59" daysLowerLimit="0" daysUpperLimit="0">
        <cacheMaxAge percent="13" daysLowerLimit="0" daysUpperLimit="1">
        <cacheMaxAge percent="17" daysLowerLimit="1" daysUpperLimit="30">
        <cacheMaxAge percent="8" daysLowerLimit="30" daysUpperLimit="365">
        <cacheMaxAge percent="3" daysLowerLimit="365" daysUpperLimit="65535">
 </cacheStats>

This media type finally conveys that the data we have been dealing with is the series of
data points for a graph that shows the frequency distribution of the length of the max-
age cache control header of requests on the Internet. This media type provides all the
information a client needs for rendering a graph of this information. However, the
applicability of this media type is fairly specific. How often is someone going to write
an application that needs to render a graph of caching statistics? The idea of writing a
specification and submitting that specification to IANA for registration seems like
overkill. The vast majority of today’s Web APIs create these narrowly focused payloads
but just don’t bother with the specification and registration part of the process. There
are alternatives, though, that provide all the information needed by the client, and yet
can be applicable to far more scenarios.

Consider the scenario in Example 6-7.
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Example 6-7. Domain-specific format
 GET /some-mystery-resource
 200 OK
 Content-Type: application/data-series+xml
 Content-Length: ??

 <series        xAxisType="range"
                        yAxisType="percent"
                        title="% of requests with their max-age value in days">
        <dataPoint yValue="59" xLowerValue="0" xUpperValue="0">
        <dataPoint yValue="13" xLowerValue="0" xUpperValue="1">
        <dataPoint yValue="17" xLowerValue="1" xUpperValue="30">
        <dataPoint yValue="8" xLowerValue="30" xUpperValue="365">
        <dataPoint yValue="3" xLowerValue="365" xUpperValue="65535">
 </series>

In this case, we have created a media type whose purpose is to deliver a series of data
points that can be used to plot a graph. It could be a line graph, a pie chart, a histogram,
or even just a table of data. The client can understand the semantics of the data points
from the perspective of drawing a graph. It doesn’t know what the graph is about; that
is left for the human consumer to appreciate. However, the additional semantics allow
the client to do things like overlay graphs, switch axes, and zoom to portions of the
graph.

The reusability of this media type is vastly higher than that of the application/
vnd.acme.cachestats+xml. Any application scenario where there is some data to be
graphed could make use of this media type. The time and effort put into writing a
specification to completely describe this format could quickly pay off.

It is my opinion that this kind of domain-specific, but not service-specific, media type
is the optimal balance of semantics that media types should convey. There are a few
examples of this sort of media type that have proven quite successful:

• HTML was conceived as a way of communicating hyperlinked textual documents.
• Atom was designed as a way to enable syndication of web-based blogs.
• ActivityStream is a way of representing streams of events.
• Json-home is designed to enable discovery of resources made available in an API.
• Json-problem is a media type designed to provide details on errors returned from

an API.

All of these media type examples have several things in common. They have semantics
that are intended to solve a specific problem, but they are not specific to any particular
application. Every API needs to return error information; most applications have areas
where there is some stream of events. These media types are defined in a completely
platform- and language-agnostic way, which means that they can be used by every de‐
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veloper in any type of application. There remain many opportunities for defining new
media types that would be reusable across many applications.

Hypermedia Types
Hypermedia types are a class of media types that are usually text based and contain links
to other resources. By providing links within representations, user agents are able to
navigate from one representation to another based on their understanding of the mean‐
ing of the link.

Hypermedia types play a huge role in decoupling clients from servers. Through hyper‐
media, clients no longer need to have preexisting knowledge of resources exposed on
the Web. Resources can be discovered at runtime.

Despite the obvious benefits of hypermedia in HTML for web applications, hypermedia
has so far played a very minor role in the development of Web APIs. Web application
developers have tended to avoid hypermedia due to lack of tooling, a perception that
links create unnecessary bloat in the size of representations, and a general lack of ap‐
preciation of its benefits.

There are scenarios where the cost of hypermedia cannot be justified—for example,
when performance is absolutely critical. For performance-critical systems, the HTTP
protocol is probably not the best choice either. When evolvability is a key goal in an
HTTP-based system, hypermedia cannot be ignored.

Media Type Explosion
So far we have seen how generic media types require out-of-band knowledge to provide
semantics, and we have seen examples of more specific media types that carry domain
semantics. Some members of the web development community are reluctant to en‐
courage the creation of new media types. There is a fear of an “explosion of media types”
—that the creation of a large number of new media types would produce badly designed
specifications, duplicated efforts, and service-specific types, and any possibility of ser‐
endipitous reuse would be severely hindered. It is not an unfounded fear, but it’s likely
that, just as with evolution, the strong would survive and the weak would have little
impact.

Generic Media Types and Profiles
There is another approach to media types that is favored by some. Its basic premise is
to use a more generic media type and use a secondary mechanism to layer semantics
onto the representation. 

One example of this is a media type called Resource Description Framework (RDF). To
dramatically oversimplify, RDF is a media type that allows you to make statements about
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things using triples, where a triple consists of a subject, an object, and a predicate that
describes the relationship between the subject and object. The significant portion of the
semantics of an RDF representation are provided by standardized vocabularies of pred‐
icates that have documented meanings. The RDF specification provides the way to relate
pieces of data together but does not actually define any domain semantics itself.

In Example 6-8, taken from the RDF Wikipedia entry, the URI http://purl.org./dc/
elements/1.1 refers to a vocabulary defined by the Dublin Core Metadata Initiative.

Example 6-8. RDF Example
<rdf:RDF
  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:dc="http://purl.org/dc/elements/1.1/">
        <rdf:Description rdf:about="http://en.wikipedia.org/wiki/Tony_Benn">
                <dc:title>Tony Benn</dc:title>
                <dc:publisher>Wikipedia</dc:publisher>
        </rdf:Description>
</rdf:RDF>

Another example of layering semantics is the use of application-level profile semantics
(ALPS). ALPS is a method of specifying domain semantics that can then be applied to
a base media type like XHTML, as shown in Example 6-9. The recently ratified link
relation profile is a way of attaching these kinds of additional semantic specifications
to existing media types.

Example 6-9. ALPS over XHTML
 GET /some-mystery-resource
 200 OK
 Content-Type: application/xhtml
 Content-Length: 29

 <html>
        <head>
        <link rel="profile" href="http://example.org/profiles/stats" />
    </head>
        <title>% of requests with their cache-control: max-age value in days </title>
        <body>
                <table class="data-series">
                        <thead>
                                <td>from</td>
                                <td>to (days)</td>
                                <td>percent</td>
                        </thead>
                        <tr class="data-point">
                                <td class="xLowerValue"></td>
                                <td class="xUpperValue">0</td>
                                <td class="yValue">59</td>
                        </tr>
                        <tr class="data-point">
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                                <td class="xLowerValue">0</td>
                                <td class="xUpperValue">1</td>
                                <td class="yValue">13</td>
                        </tr>
                        <tr class="data-point">
                                <td class="xLowerValue">1</td>
                                <td class="xUpperValue">30</td>
                                <td class="yValue">17</td>
                        </tr>
                        <tr class="data-point">
                                <td class="xLowerValue">30</td>
                                <td class="xUpperValue">365</td>
                                <td class="yValue">8</td>
                        </tr>
                        <tr class="data-point">
                                <td class="xLowerValue">365</td>
                                <td class="xUpperValue"></td>
                                <td class="yValue">3</td>
                        </tr>
                </table>
        </body>
 </html>

GET http://example.org/profiles/stats
200 OK
Content-Type: application/alps+xml

<alps version="1.0">
    <doc format="text">
        Types to support the domain of statistical data
    </doc>

   <descriptor id="data-series" type="semantic">
        <descriptor id="data-point" type="semantic">
         <doc>A data point</doc>
                <descriptor id="xValue" type="semantic"">
                        <doc>X value on graph</doc>
                </descriptor>
                <descriptor id="xLowerValue" type="semantic">
                        <doc>Lower bound on X range of values</doc>
                </descriptor>
                <descriptor id="xUpperValue" type="semantic">
                        <doc>Upper bound on X range of values</doc>
                </descriptor>
                <descriptor id="yValue" type="semantic" >
                        <doc>Y value on graph</doc>
                </descriptor>
                <descriptor id="yLowerValue" type="semantic">
                        <doc>Lower bound on Y range of values</doc>
                </descriptor>
                <descriptor id="yUpperValue" type="semantic">

112 | Chapter 6: Media Type Selection and Design



                        <doc>Upper bound on Y range of values</doc>
                </descriptor>
                </descriptor>
   </descriptor>

</alps>

The Hypermedia Application Language (HAL), demonstrated in Example 6-10, is a
generic media type that uses link relations as a way to apply domain semantics.

Example 6-10. HAL in both application/hal+xml and application/hal+json
<resource       xAxisType="range"
                        yAxisType="percent"
                        title="% of requests with their max-age value in days">
        <resource       rel="http://example.org/stats/data-point"
                                yValue="59"
                                xLowerValue="0"
                                xUpperValue="0">
        <resource       rel="http://example.org/stats/data-point"
                                yValue="13"
                                xLowerValue="0"
                                xUpperValue="1">
        <resource       rel="http://example.org/stats/data-point"
                                yValue="17"
                                xLowerValue="1"
                                xUpperValue="30">
        <resource       rel="http://example.org/stats/data-point"
                                yValue="8"
                                xLowerValue="30"
                                xUpperValue="365">
        <resource       rel="http://example.org/stats/data-point"
                                yValue="3"
                                xLowerValue="365"
                                xUpperValue="65535">
 </resource>

 {
        "xAxisType" : "range",
        "yAxisType" : "percent",
        "title" : "% of requests with their max-age value in days",
        "_embedded" : {
                "http://example.org/stats/data-point" :
                { "yValue" : "59", "xLowerValue" : "0", "xUpperValue" : "0"},
                "http://example.org/stats/data-point" :
                { "yValue" : "13", "xLowerValue" : "0", "xUpperValue" : "1"},
                "http://example.org/stats/data-point" :
                { "yValue" : "17", "xLowerValue" : "1", "xUpperValue" : "30"},
                "http://example.org/stats/data-point" :
                { "yValue" : "8", "xLowerValue" : "30", "xUpperValue" : "365"},
                "http://example.org/stats/data-point" :
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                { "yValue" : "3", "xLowerValue" : "365", "xUpperValue" : "65535"}

        }

 }

HAL relies on link relations to provide the semantics needed to interpret the non-HAL
parts of the representation. This means that in the documentation for the link relation
type http://example.org/stats/data-point, the meaning of yValue, xLowerValue,
and xUpperValue needs to be defined. HAL doesn’t care whether these values are speci‐
fied as attributes or elements; it is up to the consumer of the HAL document to discover
where the information is stored.

One challenge with using the link relation to communicate semantics is that entry point
URIs often do not have link relations. When you type a link into a browser address bar,
there is no link relation. There are a couple of workarounds for this. You can keep the
root resource limited to just embedded resources and links, or you can use a link with
the link relation type to associate semantics to the root resource.

The advantage of using a generic media type is that tooling to generate, parse, and render
those formats likely already exists and can be reused. It also means that you can define
semantic profiles that have mappings to multiple different base media types. This can
be advantageous when one particular media type is more suitable for a particular plat‐
form. When defining domain-specific media types, if it is desirable to support both
XML and JSON variants, you must write two specifications because the format and
semantics are both defined by the media type.

Efforts are under way to try to formalize the process of describing a semantic profile,
and it is likely that there will be multiple viable approaches.

The disadvantage of using the generic media type combined with a secondary semantic
profile is that the semantics of the message are less visible to intermediary components.
Media types specified in the Content-Type header can easily be processed by any layer
in the HTTP architecture. Using techniques like link relations and profiles to attach
semantics makes it more difficult for intermediaries to discover that information and
make processing decisions based on it. As is commonly the case in web architecture,
there is not only one way to do things. There are advantages and disadvantages, and
systems must be engineered to meet the requirements.

The use of a secondary semantic profile is definitely an interesting space to watch, and
I look forward to a future where there are more prescriptive solutions to defining the
semantics of a message.

From these examples, you can see there are many ways you can communicate the same
data between the client and server. Some media types carry more semantics, some less.
How much application-specific semantics you use to drive your client depends on the
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availability of existing standard media types that suit your needs and your tolerance for
coupling.

Other Hypermedia Types
The last few years have seen a number of new hypermedia types introduced. The fol‐
lowing sections summarize a few examples.

Collection+Json
The Collection+Json media type addresses the domain of lists of things. It is interesting
in that it is generic and specific at the same time. It specifically supports only lists of
things, but it does not care what the list of things is. It also has interesting semantic
affordances that can describe how to query the list and add new items to it. Although
it has minimal semantics for the items in the list, it does support the notion of profiles
for describing the list items.

Siren
Siren is another fairly new hypermedia type that is similar to HAL in that it is effective
in representing nested data structures and embedded resources. It differs from HAL in
the way it attaches semantics to data elements. Siren borrows the notion of a class from
HTML as a way to identify semantic information. It also makes a distinction between
links that are for navigating between resources and those that represent behaviors. The
action links also have their own style of link hints that describe to the client how to
invoke the action.

Although some people argue that we should all just standardize on a single format, I
would rather let natural selection take its course than try to force-fit a single hypermedia
format into every scenario. HTTP makes it easy for APIs to support multiple represen‐
tations of a resource, and clients can pick the one they prefer, so having multiple formats
in use is not a major hindrance to progress.

Up to this point, we have talked primarily about media types as a way of communicating
semantics, but as we hinted when discussing HAL, semantics can also be communicated
via link relations. The next section will discuss this further.

Link Relation Types
In the introduction to this section on contract types, I noted that link relation types
suggest why you might be interested in a particular resource.

Link relation types were first introduced in HTML. The most common link relation
type is probably the rel="stylesheet" value, which connects an HTML page to the
stylesheet used to help render it:
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<link href="..." media="all" rel="stylesheet" type="text/css" />

More recently, there has been an effort to fully specify what a link relation type really
is. This results of this effort can be found in RFC 5988.

Semantics
In the same way that media types can be very generic about the semantics they com‐
municate, so can link relations. There are some standardized link relation types—like
next, previous, current, item, collection, first, and last—that are very generic.
However, they do provide important contextual information about the related resource.
On the other hand, there are some standardized link relations that have very specific
usages. Examples of these are help, monitor, payment, license, copyright, and terms-
of-service.

Reviewing the standard registry of link relations only hints at the power of link relations.
Most of the standard link relations do not define any behavior or constraints; they simply
identify the target resource or describe the relationship between the context resource
and the target resource.

Politics
If you spend any amount of time reading about the world of web and Internet specifi‐
cations, you will quickly learn there are lots of politics involved in the process. I will
warn you that I am biased in favor of the Internet Engineering Task Force (IETF) as the
keeper of Internet-related specifications. The IETF defers to IANA for registries, which
is why I refer to the IANA media type registry and IANA link relation registry. However,
there are other organizations that are unhappy with the IETF/IANA registration pro‐
cedures and have chosen to use an alternate registry for link relations.

A few link relations have begun to suggest we can do more with them than just identify
a relation. Consider noreferrer and prefetch. noreferrer tells the user agent that if
it follows the link, it should not specify the referer header. prefetch tells the user agent
that it should retrieve the target resource prior to the user requesting to follow the link
so that the representation will already be in the cache. In these cases, the link relation
is actually instructing the user agent about how the server would like it to interact with
the link. These instructions can go much further. A link relation type specification could
indicate that only the POST method should be used with a particular link, or that when
the link is followed, the returned representation will always be application/json.

Instead of defining interaction mechanisms in a specification, some people prefer to
embed metadata into links to describe to the client how to interact with the link. For
example, an HTML <FORM> tag has a method property that indicates to the browser
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whether to use a GET or POST method. A variation on this is the use of link hints, which
allow a server to embed metadata that suggests how a link might be used. It does not
preclude there being other valid ways of using the link.

All these approaches are valid ways to communicate link mechanics to a client. Using
embedded metadata with a fairly general link relation is the most reusable approach but
requires the most bytes over the wire. It also potentially reduces the number of link
relations of which a client needs to be aware. Using a precise link relation with all the
details of the interaction specified in the documentation is more bandwidth-friendly
but puts more requirements on the client application.

If we take this idea of a precise link relation to an extreme, a link relation address could
require the use of the GET method and return application/json with properties street,
city, state, country, and zipcode. The more constrained the link relation the less
reusable it becomes, and it is highly unlikely that such a link relation would be accepted
by the subject matter experts who manage the registry. However, there is the notion of
extended link relation types, where you use a URI as an identifier to uniquely identify
the relation. When using an extended link relation type, you are not required to register
the link relation with IANA, and you are free to do what makes sense to you.

The interesting effect of using a link relation to precisely describe the expected response
is that it allows the use of generic types like application/xml and application/json
to convey data without depending on out-of-band knowledge.

However, my personal experience has been that dividing the semantics between link
relations and media types more evenly produces more reusable contract types.

Link relations and media types work together in a manner similar to how adjectives and
nouns work in language. The adjective happy can be used in combination with many
nouns. By combining the independent adjective and noun, we can avoid the need for
an explosion of nouns such as happydog, happycow, happyfish, and so on.

{ "collection" :
  {
    "version" : "1.0",
    "href" : "http://example.org/journal/?fromDate=20130921&toDate=20130922"
    "items" : [
      {
        "href" : "http://example.org/transaction/794",
        "data" : [
          {"amount" : "14576", "currency" : "USD", "date" : "20130921"}
        ],
        "links" : [
          {"rel" : "origin", "href" : "http://examples.org/account/bank1000"},
          {"rel" : "destination",
           "href" : "http://examples.org/account/payables/HawaiiTravel"}
        ]
      },
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    "items" : [
      {
        "href" : "http://example.org/transaction/794",
        "data" : [
          {"amount" : "150000", "currency" : "USD", "date" : "20130922"}
        ],
        "links" : [
          {"rel" : "origin",
           "href" : "http://examples.org/account/receivables/acme"},
          {"rel" : "destination",
           "href" : "http://examples.org/account/bank1000"}
        ]
      }
  }
}

As an example, imagine that we are to register two link relation types, origin and
destination. There are many scenarios in which we need to represent where something
has come from and where it is going—whether it is a file copy, a bank transfer, or a route
on a map. The same link relations can be reused in many different scenarios. Sometimes
the semantics of these reusable relations are sufficient to implement generic function‐
ality on the client regardless of what the links may be pointing to. This is very similar
to the way polymorphism works in object-oriented development.

Usually when people think of links in hypermedia documents, they think about defining
relationships between domain concepts. This is the primary use of links in the field of
linked data. However, it is possible to use links for much more than making declarations
about the relationships in our domain.

Replacing Embedded Resources
In the world of HTML, we are used to creating links to images, scripts, and stylesheets;
however, in APIs it is uncommon to see these kinds of static resources exposed. With
careful use of client-side private caching, an API can efficiently expose static resources
for all kinds of information that would normally be embedded into a client application.

Indirection Layer
Links are used as a way of providing a layer of indirection. By creating discovery docu‐
ments at API entry points, we can enable clients to dynamically identify the location of
certain resources without having to hardcode URIs into the client application (see
Example 6-11).

Example 6-11. A GitHub discovery resource
GET https://api.github.com/
{
        "current_user_url":"https://api.github.com/user",
        "authorizations_url":"https://api.github.com/authorizations",
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        "emails_url":"https://api.github.com/user/emails",
        "emojis_url":"https://api.github.com/emojis",
        "events_url":"https://api.github.com/events",
        ...
        "user_search_url":"https://api.github.com/legacy/user/search/{keyword}"
}

This layer of indirection allows a server to reorganize its URI structure without clients
needing to make changes. Imagine that GitHub wanted to allow searching for users by
location. It could make the following change:

"user_search_url":"https://api.github.com/legacy/user/search{?keyword,country}"

Assuming the client was following the rules of URI Template (RFC 6570) token re‐
placement, there would be no client changes necessary to adopt this new URI format.

We can also use indirection to provide a type of intelligent load balancing. If certain
resources are putting a disproportionate amount of load on a server, the URIs could be
changed to point to alternative servers with additional capacity. This can be useful when
different types of requests create very different types of workloads.

Indirection can also be useful for finding geolocated resources. Using client location
based on IP address, response representations can contain links to servers that are geo‐
graphically close. This can be very important because network latency can be a signif‐
icant factor over long distances. Accessing a server on the East Coast of the US from a
client on the West Coast will likely be on the order of 80 milliseconds. When there are
numerous resources to be retrieved to render a user interface, this can quickly be very
noticeable to an end user.

Reference Data
It is common in data entry user interfaces to provide the user a list of options to select
from. These lists don’t need to be predefined in a client application, and in fact a client
doesn’t even need to know in advance what list needs to be associated with a particular
input field. By annotating an input field with a link to a list of options, a client application
can generically identify the valid list of items without any knowledge of the input do‐
main.

For example:

<InputForm>
  <Street>/<Street>
  <City></City>
  <Province domainUrl="http://api.example.org/lists/provinces&country=CAN"/>
  <Country>Canada</Country>
</InputForm>

HTML forms achieve a similar goal by embedding the entire list into the input element,
but that is not a particularly efficient approach. Links can be used as a way to reduce
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payload size. Sometimes certain pieces of information are required less often and can
be moved off into a distinct resource. You can often offset the extra cost of the second
roundtrip with the savings from not retrieving the additional information when it is
not needed.

A second reason for splitting resources is when the volatility of the data is very different.
Retrieving a representation of sensor readings from a device that includes all the device
configuration details is wasteful because the sensor readings would likely change far
more often than the device configuration. Adding a link to the device configuration
enables us to retrieve device configuration information only when needed.

The third reason for splitting resources is to enable reuse. This is the case in our address/
province list example. The list of provinces is the same for any Canadian address. If a
user is entering many addresses, then being able to use a client cached copy of the list
can be very effective.

Workflow
Probably one of the most unique features of REST-based systems is the way that appli‐
cation workflow is defined and communicated. In RPC-based systems, the client must
understand the application interaction protocol. For example, it must know that it has
to call open before it calls send and close when it has finished. These rules have to be
baked into the clients and any dynamic detection of state must be built ad hoc.

Links, embedded into representations, can be used to instruct clients of the valid inter‐
actions based on state. A client must still be aware of the types of interactions that exist
in order to use them, but it no longer has the burden of knowing when it is allowed to
make a certain type of request.

Consider Example 6-12, a version of the same scenario using hypermedia.

Example 6-12. Using hypermedia to define workflow
GET /deviceApi
200 OK
Content-Type:  application/hal+xml

<resource>
        <link rel="http://example.org/rels/open" href="/deviceApi/sessions"/>
</resource>

POST /deviceApi/sessions
Content-Length: 0

201 Created Session
Content-Type:  application/hal+xml
Location: http://example.org/deviceApi/session/1435

<resource>
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  <link rel="http://example.org/rels/send" href="/deviceApi/session/1435{?message}"/>
  <link rel="http://example.org/rels/close" href="/deviceApi/session/1435"/>
</resource>

DELETE /deviceApi/session/1435
200 OK

The client still needs to understand the open/send/close link relations, but the server
can guide the client through the process. The client must know that to activate the open
link, it should send a POST with no body, and to activate the close link it must use the
DELETE method. In this example the responses use HAL, but there is no reason the server
could not return more than one hypermedia type. The link relations do not need to
constrain the returned media type. It is necessary, however, that the client understand
at least one of the media types returned by the server.

If a client is designed to understand that links may be dynamic, then it can adapt to
changes in the workflow. For example, if it used an algorithm where it first looks for the
send link, if it does not find one it looks for an open link, follows it, and looks once again
for a send link. With this approach, if a later version of the API does not require the
open/close dance, then the initial /deviceApi representation can be changed to im‐
mediately include the send. The client would automatically adapt to the new protocol
and continue working without change.

This is an extremely simple example. More complex applications have more complex
interaction protocols and more opportunities to take advantage of this dynamic work‐
flow capability.

Syntax
RFC 5988 also specifies the format for embedding links into HTTP headers so that even
with binary content like images and video, you can still include hypermedia with the
returned representation. What is not specified, however, is how links should be em‐
bedded into other media types. The way links are serialized must be specified by the
media type specification itself. This is another reason why using media types like ap
plication/json and application/xml can be problematic, as they don’t define how
links should be represented. There have been a number of different conventions used,
but without a hard spec it is difficult to write reusable code to parse links. It would seem
like a trivial thing to define, but I’ve seen people debate for hours over whether a JSON
object should be called links or _links.

Here are some examples of link syntax:

application/hal+json

 "_links": {
        "self": { "href": "/orders" },
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        "next": { "href": "/orders?page=2" },
        "find": {
            "href": "/orders{?id}",
            "templated": true
        },
        "admin": [{
            "href": "/admins/2",
            "title": "Fred"
        }]
    },

application/collection+json
  "links" : [
          {"rel" : "blog", "href" : "http://examples.org/blogs/jdoe",
                "prompt" : "Blog"},
          {"rel" : "avatar", "href" : "http://examples.org/images/jdoe",
                "prompt" : "Avatar", "render" : "image"}
        ]

application/vnd.github.v3+json

"assignee": {
      "login": "octocat",
      "id": 1,
      "avatar_url": "https://github.com/images/error/octocat_happy.gif",
      "gravatar_id": "somehexcode",
      "url": "https://api.github.com/users/octocat"
    }

application/hal+xml
<link rel="admin" href="/admins/5" title="Kate" />

application/atom+xml
<link href="http://www.example.org/data/q1w2e3r4" rel="related" hreflang="en" />
<collection href="http://example.org/blog/main" />
<content src="http://www.example.org/blog-posts/123" />
<icon>http://www.example.org/images/icon</icon>

text/html
 <link  rel="stylesheet" type="text/css"
        href="http://cdn2.sstatic.net/stackoverflow/all.css?v=c9b143e6d693">

 <a href="/faq">faq</a>

<form id="search" action="/search" method="get" autocomplete="off">
        <div>
            <input      autocomplete="off" name="q" class="textbox"
                        placeholder="search" tabindex="1" type="text"
                        maxlength="240" size="28" value="">
        </div>
</form>
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As you can see from these examples, links can take on many shapes in hypermedia
representations. In the coming years, I hope we will see some more convergence on
styles to remove some of the cosmetic differences. It is worth noting that although many
of these examples do not have a rel attribute, they have the notion of a link relation
type. In the case of HTML, an <a> tag could just as easily been represented as:

  <link rel="a" href="/faq"/>

The same argument can be made for representing a <FORM> tag as:

<link rel="form" id="search" action="/search" method="get" autocomplete="off">
        <div>
            <input      autocomplete="off" name="q" class="textbox"
                        placeholder="search" tabindex="1" type="text"
                        maxlength="240" size="28" value="">
        </div>
</link>

The two styles simply demonstrate two different ways of identifying the link relation
semantics. They also introduce an interesting workaround to one problem some people
have with link relations as defined by RFC 5988. In order to use a simple token like
rel="destination", you must register this relationship with IANA, which means there
will be a review by domain experts. The intent of this registry is to encourage the de‐
velopment of link relations that are suitable for use across many different media types.
As mentioned earlier, you can use the notion of extended media types and create a link
relation that uses a URI. However, URIs can be long and noisy in representations. If you
want to create a link relation that is specific to your particular media type, then you can
choose to use a serialization such as:

<family>
  <mother href="/people/bob"/>
  <father href="/people/mary"/>
</family>

By making the link relation type an integral part of the media type syntax, you are
explicitly stating that the link relation is defined only within this media type and you
can avoid the URI naming requirement of extended link relation types.

There is another interesting property of link relations. Links can have multiple relations
assigned to them. For example:

<link rel="first previous" href="/foo" />
<link rel="nofollow noreferrer" href="/bar" />

Be aware that this capability is simply a serialization optimization; it does allow the
behavior of the links to be combined. RFC 5988 says:

Relation types SHOULD NOT infer any additional semantics based upon the presence or
absence of another link relation type, or its own cardinality of occurrence.
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Semantically, there is no difference between the previous example and the following:

<link rel="first" href="/foo" />
<link rel="previous" href="/foo" />

<link rel="nofollow" href="/bar" />
<link rel="noreferrer" href="/bar" />

RFC 5988 also defines a number of other metadata properties of a link that can provide
information to the user agent on how links should be processed. Instead of being speci‐
fied in a written document, the instructions can be embedded in the representation of
the link:

<link href="..." rel="related" title="More info...." hreflang="en"
      type="text/plain" >

These attributes are simply hints to the user agent; they do not guarantee the server will
provide compliant representations.

A Perfect Combination
Link relation types and media types are the peanut butter and jelly of the distributed
application world. Link relation types bind together resource representations to create
a complete application that allows users to achieve their goals. These contract types work
best when your semantics are evenly spread between them to encourage serendipitous
reuse.

Designing a New Media Type Contract
When trying to identify the best media type to use for a particular resource, you should
always first look for standard media types. Creating media can be challenging and
sometimes standard media types may not be an exact fit, but they may be capable of
carrying enough semantics to allow the client to achieve the users’ goals.

In the case where you determine that there is no existing media type or link relation
that carries the needed semantics, then it may be worth considering creating one. When
creating a media type, aim for the following characteristics:

• The captured semantics could be used by more than one application.
• The required syntax is minimal and makes an open world assumption. In other

words, the absence of information does not make any statement about that infor‐
mation.

• Unrecognized information should be ignored unless it specifically violates other
rules.
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Selecting a Format
Most of the time when developers think of selecting a format for their media type, they
think of using XML or JSON as the base format. The advantage is that there is so much
tooling available that can process these formats, and they provide a flexible structure
on which to define additional semantics. Both formats have varying strengths and
weaknesses, and in many cases it is simply a matter of preference. However, the types
of clients that you wish to support do have an influence on the decision. If you expect
that JavaScript clients will be the primary consumers of your media type, then JSON is
the obvious choice. For systems that are integrating with large enterprise applications,
XML may be more appropriate. Either way, as web developers we need to become com‐
fortable with both formats and use whichever one makes the most sense.

However, I would caution against doing both. XML and JSON are quite different in
their approach to data representation, and you risk creating a lowest-common-
denominator format that doesn’t really take advantage of either format. If you really do
feel you need to support both, then recognize that managing two different spec formats
is double the work and the community using the media type will end up being frag‐
mented. For generic formats like HAL, it may make sense to support both variants, but
it is a decision that you should not take lightly: having two variants that work slightly
differently may end up causing more confusion than it is worth to attract the larger
audience that refuses to adopt the single chosen format.

Sometimes, neither XML nor JSON may be the right choice. I’ve seen numerous occa‐
sions where people have been using a JSON document for the purposes of updating a
single property value. In some cases, a plain-text format representation is the simplest
choice. All languages have libraries that allow converting from simple text into native
data types. If all you want to do is transfer a simple value, then consider text/plain or
some derivative of it as an option.

The use of text/plain format is a good example of why it is smart to
keep metadata out of the body of your HTTP representation. Many
APIs have taken this approach, including status codes and other met‐
adata in the body of their responses. However, if you do this, you are
limiting the media types that you can use and duplicating the intent
of the HTTP headers. If you are forced to support clients that can‐
not access HTTP headers, then define special media types just for
those clients. Try not to constrain your API for other, more capable
clients.

Creative use of media types does not need to be limited to text-based types. In a blog
post, Roy Fielding shows how to use a monochrome image format as a sparse array to
identify resources that have changed in a single representation to avoid polling large
numbers of them.
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Enabling Hypermedia
As covered in Chapter 1, for media types that are not text based, the best option for
hypermedia is to use link headers as defined in RFC 5988. For text-based formats, we
discussed the variety of link syntaxes that are currently in use when covering link rela‐
tions. However, there are a few other concerns that we need to address at the media type
level. Should the media type allow two links with the same relation? If so, how can a
user agent distinguish between those two links? In HAL, a link can have a name attribute
associated with the link to identify it. HTML allows tags to have an id attribute associated
for the purposes of identification.

Is there a need for hyperlinks to reference a particular element within an instance of the
media type? Should a syntax be defined for identifying fragments?

What are the rules for resolving relative URIs?

Optional, Mandatory, Omitted, Applicable
When designing media types, especially ones used to represent writeable resources, I
have found it necessary to convey semantics about the presence or absence of a particular
piece of information. The most obvious scenario is that of a mandatory element. In the
case of our Issue item media type, the title attribute is the one property that is
mandatory.

For properties that are not mandatory, there are a number of reasons why a property
may not be present in a representation. A resource may have chosen to include only a
subset of properties in a representation for performance reasons, and therefore certain
properties may be omitted. Another possibility is that the property is considered non‐
applicable.

Applicability refers to when the relevance of one property is dependent on the value of
another property of the resource. For example, in an employee record, there may be a
TerminatedDate field. If the employee status is Current, then it is likely that the Termi
natedDate field is not applicable. Database tables and classes don’t have the flexibility
to change their shape dynamically per entity instance, so we often end up using null
values to indicate that a property does not have any meaningful value. Unfortunately, a
null value is also used to indicate that a property has not yet been supplied a value. This
is not the same as a property being not applicable.

With media type representations, we can completely omit any syntax relating to the
nonapplicable property and include the property syntax, but set the value as null or
empty for those where a value has not yet been defined.

The policy of removing nonapplicable properties from representations can simplify
client code and reduce coupling. There is often business logic that correlates the con‐
trolling property and the dependent properties. If the client assumes that the presence
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of a property infers applicability, then the client never needs to be aware of that business
logic and can evolve without impacting the client.

The ability to distinguish between mandatory, applicable, and omit‐
ted properties is one example of how explicitly defined media types
are more expressive than object serialization formats, as those for‐
mats are limited to the semantics that can be expressed by a class.

When defining representations that contain only a subset of the resource properties,
you need to avoid ambiguity between information that is being omitted and information
that’s nonapplicable. Attribute groups can sometimes help in these cases in the same
way they allow partitioning of mandatory fields.

Embedded Versus External Metadata
Annotating representations is one way to include metadata such as a mandatory flag,
type definitions, and range conditions. For example:

<foo>
    <fooDate required="true" type="Date" minValue="2001/01/01"
                 maxValue="2020/12/31">2010/04/12</fooDate>
</foo>

This approach makes it easy for the client to access the metadata because it will be parsed
at the same time as the actual data. However, as the amount of metadata increases it can
significantly increase the size of the representation, and usually the metadata changes
far less frequently than the data does. Also, the same metadata can usually be reused for
many resources that belong to a single resource class.

When a resource contains two distinct sets of data that have different lifetimes, often
the best option is to break it into two resources and link the resource with the shorter
lifetime to the resource with the longer lifetime. This allows caching layers to reduce
the data transmitted across the network.

One challenging aspect of using external metadata is that we must correlate which pieces
of metadata apply to which pieces of representation data. Some media types define a
selection syntax that allows us to point to a specific fragment of data within a document.
For example, CSS stylesheets use selectors, and XML-based representations can use
XPath queries to identify nodes within a document.

Extensibility
Media types are the point of coupling between the client and the server. A breaking
change to a media type specification will potentially break clients. Ensuring that media
types are designed to be extensible will help to minimize breaking changes while ac‐
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commodating changing requirements. Writing client code to handle extensible formats
can be trickier, as you can’t make as many assumptions about the format. However, the
up-front cost of writing more tolerant parsing code will quickly pay off.

One common tactic is to achieve extensibility to ignore unknown content. This may
seem like counterintuitive advice to someone with lots of experience with schemas like
XSD. However, this enables existing parsers to continue to process new versions of the
media type that contain additional information. Returning to our minimal information
model of an Issue, it could be represented in XML by:

<Issue>
   <Title>This is a bug</Title>
   <Description>Here are the details of the bug.</Description>
</Issue>

Assuming we wrote a parser that looked for the elements using the XPath queries /
Issue/Title and /Issue/Description, then if the media type were enhanced to allow:

<Issue>
   <Title>This is a bug</Title>
   <FoundBy href='http://issueapi.example.org/user/342'/>
   <Description>Here are the details of the bug.</Description>
</Issue>

the existing parser would still be able to process this document even if there were missing
information. What happens to that extra information is very much dependent on the
use case. In some scenarios, it can be safely ignored. In others, the user should be warned
about the fact that some information cannot be processed. Some services may choose
to refuse to accept additional information that is not understood. All these are valid
options, but there is no need to constrain the media type to support only one of the
scenarios.

Another constraint that is often applied by XSD schemas is the ordering of elements.
Unless the order of properties has some semantic significance, there is no need for a
media type specification to enforce the order. I can imagine there are some simplicity
and performance benefits for the parsing logic when properties appear in a specific
order; however, once you allow unknown properties, those benefits are minimal. Fa‐
cilitating extensibility is as much about avoiding unnecessary constraints as it is about
applying constraints.

A media type specification should try to limit itself to constraints defined by the domain
and not be limited by the implementation constraints of the service. For example, when
a service is backed by a database, it is common to define field lengths. Field lengths are
a constraint of the database used by the service; other implementations that use the
media type will likely have different physical constraints. Arbitrarily enforcing a lowest-
common-denominator constraint due to current implementation limitations is both
unnecessary and unwise.
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JSON Numeric Values
There is an interesting ongoing debate about JSON as a standard. Most JSON imple‐
mentations limit the range of a numeric value in a JSON document to the same limit as
those defined by JavaScript (64-bit floating-point value). However, Douglas Crockford,
the author of JSON, has argued that JSON should exist independent of JavaScript and
that there should be no constraint on the numeric value that can be represented in a
JSON document. This is a forward-looking perspective that acknowledges the fact that
JSON will most likely outlast the current JavaScript implementations. Admittedly, this
decision makes life more difficult for the parser implementors, but I believe it is a
worthwhile price to pay.

As a general rule of thumb, when it comes to defining a constraint in a media type, I
ask myself if it is possible to parse the representation without the constraint and still
convey the same meaning. If so, then I drop the constraint. The fewer the rules, the more
likely it is for any extension to the media type to be harmless to existing code.

Registering the Media Type
In order for this “distributed type system” of media types to work, there needs to be a
way for people to discover what valid types exist. The IANA registry is that central
location. However, we have to be honest and say the current state of the IANA media
type registry is pretty dismal. Currently, it consists of a few web pages with a bunch of
links. Many of those links point to little more than an email message from 20 years
ago. However, the fact that these entries still exist highlights the permanence of deploy‐
ing types on the Internet. Once a new type has been let out onto the Internet, there is
no guaranteed way of removing it. This is another reason why versioning media types
can be problematic. There is no easy way to say “don’t use that version anymore.”

Many of the IANA registries have been updated to a newer XML/XSLT/XHTML format
that makes them easier to consume by crawlers. However, the media type registry has
not yet had this makeover and remains a pain to harvest.

The registration process is also fairly barbaric. It suggests you read six different RFCs
and then asks you to submit an HTML form. It is recommended that before you submit
the application form, you publish the proposed specification on the Internet and send
an announcement of intent to submit to the IETF Types mailing list. The experts who
moderate this list will likely provide feedback to assist in any perceived problems with
the proposal. Be aware that these experts provide this guidance for free and are not there
to educate people on media type design. When participating in these lists, try not to
misinterpret bluntness and brevity for hostility!

Designing a New Media Type Contract | 129

http://bit.ly/json-limits
http://bit.ly/atomicmail
http://bit.ly/atomicmail
http://bit.ly/getting-mtypes
http://bit.ly/getting-mtypes
http://bit.ly/mt-apply
http://bit.ly/ietf-types


There definitely is a need for some community pressure on IANA to improve the media
type registry and its registration process. This is a critical piece of Internet infrastructure,
and yet many visitors get the impression it is obsolete and abandoned because of its
unkempt appearance.

Designing New Link Relations
After searching the link relation registry and failing to find a link relation that describes
the type of resource that you want to link to, you have the option to create your own
link relation type. There are three distinct paths that you could take for this:

• Define the specifications for a new standard link relation type and submit that for
approval.

• Create an “extended” link relation type for your own purposes.
• Integrate the link specification into your media type specification if you are already

creating one.

Standard Link Relations
Creating a standard link relation has the benefit of your being able to use a short name
for the rel value. The effort required to specify and register a link relation type does
not have to be significant. The specification for the license link relation is a good
example to review.

It is interesting to note that the RFC 4946 specification discusses only the use of the
license relation within the context of Atom documents. In the IANA link relation
registry, there is also a pointer that refers to a discussion in the HTML specification of
its use within HTML documents. Another similar example comes from reading the
specification on the monitor link relation, which implies it is for use only with the SIP
protocol. It is unfortunate that these specifications are suggesting that their use is tied
to particular media types. I’m quite sure that we need to be able to assign licenses to
more than just HTML and Atom feeds, and I know that SIP is not the only way to
monitor the status of resources.

One challenge of working in any complex discipline is knowing when you must follow
the rules and knowing when you can break them. In these scenarios, I believe that these
link relations have value beyond the context within which they have been defined and
I am prepared to use them in other scenarios. I hope that as more people adopt the use
of link relations in new scenarios, more awareness will follow about their reusability
and new specifications will avoid tying them to specific media types.

The guidance for creating new link relations is very similar to that for media types. You
want the relation to be as generic as possible while still providing sufficient semantics
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to address a particular domain issue. Some examples that are currently not standardized
link relations but would be good candidates are:
Owner

A link to a resource that is responsible for the current resource.

Home
A link to an API entry point or root resource.

Like
An unsafe link to indicate a user’s appreciation of a resource.

Favorite
An unsafe link to request that the resource be stored as a favorite of a user.

The Microformats website documents many other proposed link relations and ones
discovered in use in the wild. One interesting example is sitemap, which is widely used
on the Web. In its specification, it prescribes the exact formats of the responses that are
expected. This is an example of putting all the semantics in the link relation and none
in the media type.

Extension Link Relations
Extension link relations are defined in RFC 5988 and allow you to create link relations
that are not registered with IANA. To avoid naming conflicts, you must make the relation
name a URI. This enables the use of the domain naming system to ensure uniqueness.
Unfortunately, using URIs for link relations can become large and ugly within a repre‐
sentation. You can use CURIEs to abbreviate link relations, but some people don’t like
them because they look like XML namespaces but don’t behave in the same way.

Having this capability is extremely useful, but it does lead to the possibility of link
relation abuse. Once developers realize the power of link relations, they tend to go
overboard and start creating service-specific link relations. Although this will work in
the short term, it is not the best choice for the system’s evolution or the overall web
ecosystem due to the service-specific coupling that it introduces.

Embedded Link Relations
If the link relation is closely related to the semantics of a media type, it may make sense
to make the link relation part of the media type specification and valid only within the
media type itself. The HTML <FORM> tag is an example of a link relation that is defined
within the media type itself. However, it is unfortunate that it was defined this way
because there are currently efforts to duplicate very similar functionality in all the other
hypermedia media types. If <FORM> had been defined as an independent link relation,
it would make it easier to reuse in other media types.
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Registering the Link Relation
The process for registering link relations is fairly straightforward and is documented
fully in RFC 5988.

Media Types in the Issue Tracking Domain
In Chapter 4, we identified several different categories of resources: list resources, item
resources, discovery resources, and search resources. For each of these resource cate‐
gories, we need to identify which media types we believe are the most appropriate to
carry the required semantics.

Homogeneous APIs
Some developers tend to try and pick a single media type and reuse it across an entire
API. There is a perception that delivering just one media type will reduce the effort of
the client developer. In many cases, it does exactly the opposite; trying to package all
the semantics of a nontrivial API into a single media type means either that the speci‐
fication is going to be complex, or some semantics are going to be communicated out
of band. Limiting the client to processing only a single media type becomes problematic
when the API starts to integrate links with external systems. If the client is designed to
process only the dedicated API media type, then it may be difficult to build in support
for other media types from other APIs.

Building clients that can easily process many different media types encourages seren‐
dipitous reuse and facilitates system evolution and integration.

List Resources
For resources that return a list of items, we will be using the media type called collec
tion+json. This is a hypermedia-enabled type designed explicitly to support lists of
items. This media type supports associating an arbitrary set of data with each item in
the list. It includes queries to enable searching for various subsets of items as well as a
template property to facilitate creating a new item in the list.

We could have used HAL or even XHTML, as both are capable of representing a list of
items; however, as collection+json is specifically designed for the purpose of repre‐
senting lists, it seems a more natural fit. Example 6-13 demonstrates how collection
+json can be used to represent a list of issues.

Example 6-13. Sample issue list
{
  "collection": {
    "href": "http://localhost:8080/Issue",
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    "links": [],
    "items": [
      {
        "href": "http://localhost:8080/issue/1",
        "data": [
          {
            "name": "Description",
            "value": "This is an issue"
          },
          {
            "name": "Status",
            "value": "Open"
          },
          {
            "name": "Title",
            "value": "An issue"
          }
        ],
        "links": [
          {
            "rel": "http://webapibook.net/rels#issue-processor",
            "href": "http://localhost:8080/issueprocessor/1?action=transition"
          },
          {
            "rel": "http://webapibook.net/rels#issue-processor",
            "href": "http://localhost:8080/issueprocessor/1?action=close"
          }
        ]
      },
      {
        "href": "http://localhost:8080/issue/2",
        "data": [
          {
            "name": "Description",
            "value": "This is a another issue"
          },
          {
            "name": "Status",
            "value": "Closed"
          },
          {
            "name": "Title",
            "value": "Another Issue"
          }
        ],
        "links": [
          {
            "rel": "http://webapibook.net/rels#issue-processor",
            "href": "http://localhost:8080/issueprocessor/2?action=transition"
          },
          {
            "rel": "http://webapibook.net/rels#issue-processor",
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            "href": "http://localhost:8080/issueprocessor/2?action=open"
          }
        ]
      }
    ],
    "queries": [
      {
        "rel": "http://webapibook.net/rels#search",
        "href": "/issue",
        "prompt": "Issue search",
        "data": [
          {
            "name": "SearchText",
            "prompt": "Text to match against Title and Description"
          }
        ]
      }
    ],
    "template": {
      "data": []
    }
  }
}

Item Resources
We have several options for representing each individual issue. We could use HAL and
define a link relation issue that specifies the content. We could use XHTML and define
a semantic profile that annotates the HTML with semantics from the issue tracking
domain. Or we could define a new media type to represent an issue.

The notion of an issue is sufficiently generic that it could easily be reused by many
services, and therefore it justifies the creation of a new media type. This is not a niche
domain; it is one used by every software developer and many customer support call
centers. Having an interoperable format, even if implementation variations prevent a
full-fidelity communication, has the potential to be extremely valuable.

A sample representation of this media type is shown in Example 6-14. For the moment,
this media type will be defined as JSON. Early adopters of web technology are more
likely to be comfortable with JSON, and if the media type gains traction, then an XML
variant will be defined to enable wider adoption.

The full specification for this media type can be found in Appendix E.

Supporting Multiple Formats
One interesting approach to avoid creating two distinct specifications for the XML and
JSON variant is demonstrated in the api-problem documentation. In this case, the core
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specification assumes JSON as the format but includes an appendix for mapping the
media type onto XML.

Example 6-14. Sample issue
{
  "id": "1",
  "title": "An issue",
  "description": "This is an issue",
  "status": "Open",
  "Links": [
    {
      "rel": "self",
      "href": "http://localhost:8080/issue/1"
    },
    {
      "rel": "http://webapibook.net/rels#issue-processor",
      "href": "http://localhost:8080/issueprocessor/1?action=transition",
      "action": "transition"
    },
    {
      "rel": "http://webapibook.net/rels#issue-processor",
      "href": "http://localhost:8080/issueprocessor/1?action=close",
      "action": "close"
    }
  ]
}

Discovery Resource
The discovery resource is an entry point resource that points to other resources that are
available in the system. For this resource, we will be using a recently proposed media
type called json-home. This media type is designed specifically to provide a represen‐
tation for an entry point resource that allows dynamic discovery of resources. It is similar
to the Atom Service Document but not limited to pointing to Atom feeds. The json-
home document can have links to any arbitrary resource and can contain additional
metadata that can be used to discover how to activate those links. Example 6-15 shows
a possible json-home document for the Issue Tracker API.

Example 6-15. Sample root resource
{
  "resources": {
    "http://webapibook.net/rels#issue": {
      "href": "/issue/{id}",
      "hints": {
        "allow": [
          "GET"
        ],
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        "formats": {
          "application/json": {},
          "application/vnd.issue+json": {}
        }
      }
    },
    "http://webapibook.net/rels#issues": {
      "href": "/issue",
      "hints": {
        "allow": [
          "GET"
        ],
        "formats": {
          "application/json": {},
          "application/vnd.collection+json": {}
        }
      }
    },
    "http://webapibook.net/rels#issue-processor": {
      "href": "/issueprocessor/{id}{?action}",
      "hints": {
        "allow": [
          "POST"
        ]
      }
    }
  }
}

Search Resource
For searching we will likely be able to rely on the query capability of collection
+json. Where this proves insufficient, we will try to use the link relation search and
the protocol defined by OpenSearch.

Conclusion
Media types and link relations are the tools used to manage the coupling between the
components in your distributed application. This chapter has covered the different ways
to use that coupling to communicate application semantics. Being aware of existing
specifications, and how and when to create new ones, provides a solid foundation on
which to actually start building an API. In the next chapter, we begin to write a sample
API based on the knowledge we have gained.
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CHAPTER 7

Building the API

The proof of the pudding is in the eating, so let’s eat.

In the previous two chapters, you learned about the design of the issue tracker system,
and the media types that it will support for its interactions. Throughout this chapter,
you’ll see how to build the basic implementation of the Web API that supports that
design. The goal for this exercise is not that the API should be fully functional or im‐
plement the entire design. It is to get the essential pieces in place that will enable us to
address other concerns and to evolve the system.

This chapter is also not going to delve into too much detail on any of the individual
parts, as the focus here is to put the pieces together. Later chapters will cover each of the
different aspects of ASP.NET Web API in more detail.

The Design
At a high level, the design of the system is the following:

1. There is a backend system (such as GitHub) that manages issues.
2. The Issue collection resource retrieves items from the backend. It returns a

response in either the Issue+Json or Collection+Json formats. This resource can
also be used for creating new issues via an HTTP POST.

3. The Issue item resources contain representations of a single issue from the back‐
end system. Issues can be updated via PATCH or deleted via a DELETE request.

4. Each issue contains links with the following rel values:
self

Contains the URI for the issue itself

137



open

Requests that the issue status be changed to Closed
close

Requests that the issue status be be changed to Open
transition

Requests to move the issue to the next appropriate status (e.g., from Open to
Closed)

5. A set of Issue processor resources handles the actions related to transitioning the
state of the issue.

Getting the Source
The implementation and unit tests for the API are available in the WebApiBook repo,
or by cloning the issuetracker repo and checking out the dev BuildingTheApi branch.

Building the Implementation Using BDD
The API was built in a test-driven manner using BDD-style acceptance tests to drive
out the implementation. The main difference between this and traditional TDD style is
its focus on the end-to-end scenarios rather than the implementation. With acceptance-
style tests, you’ll get to see the full end-to-end process starting with the initial request.

BDD Primer
Behavior-driven development (BDD) is a style of test-driven development (TDD) that
focuses on verifying the behavior of the system, whereas traditional TDD focuses on
the implementation of different components. In BDD, requirements are generally writ‐
ten by a business expert in a form that can then be executed by the developer.

There are various forms of BDD, but the most common uses the Gherkin syntax or
Given, When, Then syntax. This syntax breaks up tests into features and scenarios. A
feature is a single component that is being tested. Each feature has one or more scenarios
that cover different parts of the feature. Each scenario is then broken down by steps,
where each step is a Given, When, and Then, And, or But statement.

The Given clause sets the initial state of the system, When specifies something per‐
formed on the system, and Then is an assertion of the expected behavior. Each clause
can have multiple parts joined together with And for inclusion or But for exclusion.
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Navigating the Solution
Open up the WebApiBook.IssueTrackerApi.sln, located in the src folder. You’ll notice
the following projects:
WebApiBook.IssueTrackerApi

Contains the API implementation.

WebApiBook.IssueTrackerApi.AcceptanceTests

Contains BDD acceptance tests that verify the behavior of the system. Within the
project file, you will see a Features folder with test files per feature, each of which
contains one or more tests for that feature.

WebApiBook.IssueTrackerApi.SelfHost

Contains a self-host for the API.

Packages and Libraries
Throughout the code, you’ll notice the following packages and tools:
Microsoft.AspNet.WebApi.Core

ASP.NET Web API is used for authoring and hosting our API. The Core package
provides the minimum set of functionality needed.

Microsoft.AspNet.WebAp.SelfHost

This package provides the ability to host an API outside of IIS.

Autofac.WebApi

Autofac is used for dependency and lifetime management.

xunit

XUnit is used as the test framework/runner.

Moq

Moq is used for mocking objects within tests.

Should

The Should library is used for “Should” assertion syntax.

XBehave

The XBehave library is used for Gherkin-style syntax in the tests.

CollectionJson

This adds support for the Collection+Json media type.
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Self-Host
Included in the source is a self-host for the Issue Tracker API. This will allow you to fire
up the API and send it HTTP requests using a browser or a tool such as Fiddler. This
is one of the nice features of ASP.NET Web API that make it really easy to develop with.
Open the application (make sure to use admin privileges) and run it. Immediately you
will see you have a host up and running, as shown in Figure 7-1.

Figure 7-1. Self-host

One thing to keep in mind is that running self-hosted projects in Visual Studio requires
either running as an administrator or reserving a port using the netsh command.

Sending a request to http://localhost:8080 using an Accept header of application/
vnd.image+json will give you the collection of issues shown in Figure 7-2.
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Figure 7-2. Sending a request for issues to the self-hosted API

If at any time throughout this chapter, you want to try out the API directly, using the
self-host is the key! You can then put breakpoints in the API and step through to see
exactly what is going on.

Now, on to the API!

Models and Services
The Issue Tracker API relies on a set of core services and models in its implementation.

Issue and Issue Store
As this is an issue tracker project, there needs to be a place to store and retrieve issues.
The IIssueStore interface (WebApiBook.IssueTrackerApi\Infrastructure\IIssueS‐
tore.cs) defines methods for the creation, retrieval, and persistence of issues as shown
in Example 7-1. Notice all the methods are async, as they will likely be network I/O-
bound and should not block the application threads.

Example 7-1. IIssueStore interface
public interface IIssueStore
{
    Task<IEnumerable<Issue>> FindAsync();
    Task<Issue> FindAsync(string issueId);
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    Task<IEnumerable<Issue>> FindAsyncQuery(string searchText);
    Task UpdateAsync(Issue issue);
    Task DeleteAsync(string issueId);
    Task CreateAsync(Issue issue);
}

The Issue class (WebApiBook.IssueTrackerApi\Models\Issue.cs) in Example 7-2 is a
data model and contains data that is persisted for an issue in the store. It carries only
the resource state and does not contain any links. Links are application state and do not
belong in the domain, as they are an API-level concern.

Example 7-2. Issue class
public class Issue
{
    public string Id { get; set; }
    public string Title { get; set; }
    public string Description { get; set; }
    public IssueStatus Status { get; set; }
}

public enum IssueStatus {Open, Closed}

IssueState
The IssueState class (WebApiBook.IssueTrackerApi\Models\IssueState.cs) in
Example 7-3 is a state model designed to carry both resource and application state. It
can then be represented in one or more media types as part of an HTTP response.

Example 7-3. IssueState class
public class IssueState
{
    public IssueState()
    {
        Links = new List<Link>();
    }

    public string Id { get; set; }
    public string Title { get; set; }
    public string Description { get; set; }
    public IssueStatus Status { get; set; }
    public IList<Link> Links { get; private set; }
}

Notice the IssueState class has the same members as the Issue class with the addition
of a collection of links. You might wonder why the IssueState class doesn’t inherit from
Issue. The answer is to have better separation of concerns. If IssueState inherits from
Issue, then it is tightly coupled, meaning any changes to Issue will affect it. Evolvability
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is one of the qualities we want for the system; having good separation contributes to
this, as parts can be modified independently of one another.

IssuesState
The IssuesState class (WebApiBook.IssueTrackerApi\Models\IssuesState.cs) in
Example 7-4 is used for returning a collection of issues. The collection contains a set of
top-level links. Notice the collection also explicitly implements the CollectionJson
library’s IReadDocument interface. This interface, as you will see, is used by the Collec
tionJsonFormatter to write out the Collection+Json format if the client sends an
Accept of application/vnd.collection+json. The standard formatters, however, will
use the public surface.

Example 7-4. IssuesState class
using CJLink = WebApiContrib.CollectionJson.Link;

public class IssuesState : IReadDocument
{
    public IssuesState()
    {
        Links = new List<Link>();
    }

    public IEnumerable<IssueState> Issues { get; set; }
    public IList<Link> Links { get; private set; }

    Collection IReadDocument.Collection
    {
        get
        {
            var collection = new Collection(); // <1>
            collection.Href = Links.SingleOrDefault(l => l.Rel ==
                IssueLinkFactory.Rels.Self).Href; // <2>
            collection.Links.Add(new CJLink {Rel="profile",
                Href = new Uri("http://webapibook.net/profile")}); // <3>
            foreach (var issue in Issues) // <4>
            {
                var item = new Item(); // <5>
                item.Data.Add(new Data {Name="Description",
                    Value=issue.Description}); // <6>
                item.Data.Add(new Data {Name = "Status",
                    Value = issue.Status});
                item.Data.Add(new Data {Name="Title",
                    Value = issue.Title});
                foreach (var link in issue.Links) // <7>
                {
                    if (link.Rel == IssueLinkFactory.Rels.Self)
                        item.Href = link.Href;
                    else
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                    {
                        item.Links.Add(new CJLink{Href = link.Href,
                            Rel = link.Rel});
                    }
                }
                collection.Items.Add(item);

            }
            var query = new Query {
                Rel=IssueLinkFactory.Rels.SearchQuery,
                Href = new Uri("/issue", UriKind.Relative),
                    Prompt="Issue search" }; // <8>

            query.Data.Add(
                new Data() { Name = "SearchText",
                    Prompt = "Text to match against Title and Description" });
            collection.Queries.Add(query);
            return collection; // <9>
        }
    }
}

The most interesting logic is the Collection, which manufactures a Collection
+Json document:

• A new Collection+Json Collection is instantiated. <1>
• The collection’s href is set. <2>
• A profile link is added to link to a description of the collection <3>.
• The issues state collection is iterated through <4>, creating corresponding Collec
tion+Json Item instances <5> and setting the Data <6> and Links <7>.

• An “Issue search” query is created and added to the document’s query collection.
<8>

• The collection is returned. <9>

Link
The Link class (WebApiBook.IssueTrackerApi\Models\Link.cs) in Example 7-5 carries
the standard Rel and Href shown earlier and includes additional metadata for describ‐
ing an optional action associated with that link.

Example 7-5. Link class
public class Link
{
    public string Rel { get; set; }
    public Uri Href { get; set; }
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    public string Action { get; set; }
}

IssueStateFactory
Now that the system has an Issue and an IssueState, there needs to be a way to get
from the Issue to the State. The IssueStateFactory (WebApiBook.IssueTrackerApi
\Infrastructure\IssueStateFactory.cs) in Example 7-6 takes an Issue instance and man‐
ufactures a corresponding IssueState instance including its links.

Example 7-6. IssueStateFactory class
public class IssueStateFactory : IStateFactory<Issue, IssueState> // <1>
{
    private readonly IssueLinkFactory _links;

    public IssueStateFactory(IssueLinkFactory links)
    {
        _links = links;
    }

    public IssueState Create(Issue issue)
    {
        var model = new IssueState // <2>
            {
                Id = issue.Id,
                Title = issue.Title,
                Description = issue.Description,
                Status = Enum.GetName(typeof(IssueStatus),
                    issue.Status)
            };

        //add hypermedia
        model.Links.Add(_links.Self(issue.Id)); // <2>
        model.Links.Add(_links.Transition(issue.Id));

        switch (issue.Status) { // <3>
            case IssueStatus.Closed:
                model.Links.Add(_links.Open(issue.Id));
                break;
            case IssueStatus.Open:
                model.Links.Add(_links.Close(issue.Id));
                break;
        }

        return model;
    }
}

Here is how the code works:

Models and Services | 145



• The factory implements IStateFactory<Issue, IssueState>. This interface is
implemented so that callers can depend on it rather than the concrete class, thereby
making it easier to mock in a unit test.

• The create method initializes an IssueState instance and copies over the data
from the Issue <1>.

• Next, it contains business logic for applying standard links, like Self and Transition
<2>, as well as context-specific links, like Open and Close <3>.

LinkFactory
Whereas the StateFactory contains the logic for adding links, the IssueLinkFacto
ry creates the link objects themselves. It provides strongly typed accessors for each link
in order to make the consuming code easier to read and maintain.

First comes the LinkFactory class (WebApiBook.IssueTrackerApi\Infrastructure\Link‐
Factory.cs) in Example 7-7, which other factories derive from.

Example 7-7. LinkFactory class
public abstract class LinkFactory
{
    private readonly UrlHelper _urlHelper;
    private readonly string _controllerName;
    private const string DefaultApi = "DefaultApi";

    protected LinkFactory(HttpRequestMessage request, Type controllerType) // <1>
    {
        _urlHelper = new UrlHelper(request); // <2>
        _controllerName = GetControllerName(controllerType);
    }

    protected Link GetLink<TController>(string rel, object id, string action,
        string route = DefaultApi) // <3>
    {
        var uri = GetUri(new { controller=GetControllerName(
            typeof(TController)), id, action}, route);
        return new Link {Action = action, Href = uri, Rel = rel};
    }

    private string GetControllerName(Type controllerType) // <4>
    {
        var name = controllerType.Name;
        return name.Substring(0, name.Length - "controller".Length).ToLower();
    }

    protected Uri GetUri(object routeValues, string route = DefaultApi) // <5>
    {
        return new Uri(_urlHelper.Link(route, routeValues));

146 | Chapter 7: Building the API



    }

    public Link Self(string id, string route = DefaultApi) // <6>
    {
        return new Link { Rel = Rels.Self, Href = GetUri(
            new { controller = _controllerName, id = id }, route) };
    }

    public class Rels
    {
        public const string Self = "self";
    }
}

public abstract class LinkFactory<TController> : LinkFactory // <7>
{
    public LinkFactory(HttpRequestMessage request) :
        base(request, typeof(TController)) { }
}

This factory generates URIs given route values and a default route name:

• It takes the HttpRequestMessage as a constructor parameter <1>, which it uses to
construct a UrlHelper instance <2>. It also takes a controller type which it will use
for generating a “self ” link.

• The GetLink generic method manufactures a link based on a rel, a controller to link
to, and additional parameters. <3>

• The GetControllerName method extracts the controller name given a type. It is
used by the GetLink method. <4>

• The GetUri method uses the UrlHelper method to generate the actual URI. <5>
• The base factory returns a Self link <6> for the specified controller. Derived fac‐

tories can add additional links, as you will see shortly.
• The LinkFactory<TController> convenience class <7> is provided to offer a more

strongly typed experience that does not rely on magic strings.

IssueLinkFactory
The IssueLinkFactory (WebApiBook.IssueTrackerApi\Infrastructure\IssueLinkFacto‐
ry.cs) in Example 7-8 generates all the links specific to the Issue resource. It does not
contain the logic for whether or not the link should be present in the response, as that
is handled in the IssueStateFactory.
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Example 7-8. IssueLinkFactory class
public class IssueLinkFactory : LinkFactory<IssueController> // <1>
{
    private const string Prefix = "http://webapibook.net/rels#"; // <5>

    public new class Rels : LinkFactory.Rels { // <3>
        public const string IssueProcessor = Prefix + "issue-processor";
        public const string SearchQuery = Prefix + "search";
    }

    public class Actions { // <4>
        public const string Open="open";
        public const string Close="close";
        public const string Transition="transition";
    }

    public IssueLinkFactory(HttpRequestMessage request) // <2>
    {
    }

    public Link Transition(string id) // <6>
    {
        return GetLink<IssueProcessorController>(
            Rels.IssueProcessor, id, Actions.Transition);
    }

    public Link Open(string id) { // <7>
        return GetLink<IssueProcessorController>(
            Rels.IssueProcessor, id, Actions.Open);
    }

    public Link Close(string id) { // <8>
        return GetLink<IssueProcessorController>(
            Rels.IssueProcessor, id, Actions.Close);
    }
}

Here’s how the class works:

• This factory derives from LinkFactory<IssueController> as the self link it gen‐
erates is for the IssueController <1>.

• In the constructor it takes an HttpRequestMessage instance, which it passes to the
base. It also passes the controller name, which the base factory uses for route gen‐
eration <2>.

• The factory also contains inner classes for Rels <3> and Actions <4>, removing the
need for magic strings in the calling code.

• Notice the base Rel <5> is a URI pointing to documentation on our website with a
# to get to the specific Rel.
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• The factory includes Transition <6>, Open <7>, and Close <8> methods to generate
links for transitioning the state of the system.

Acceptance Criteria
Before getting started, let’s identify at a high level acceptance criteria for the code using
the BDD Gherkin syntax.

Following are the tests for the Issue Tracker API, which covers CRUD (create-read-
update-delete) access to issues as well as issue processing:

Feature: Retrieving issues
  Scenario: Retrieving an existing issue
    Given an existing issue
    When it is retrieved
    Then a '200 OK' status is returned
    Then it is returned
    Then it should have an id
    Then it should have a title
    Then it should have a description
    Then it should have a state
    Then it should have a 'self' link
    Then it should have a 'transition' link

  Scenario: Retrieving an open issue
    Given an existing open issue
    When it is retrieved
    Then it should have a 'close' link

  Scenario: Retrieving a closed issue
    Given an existing closed issue
    When it is retrieved
    Then it should have an 'open' link

  Scenario: Retrieving an issue that does not exist
    Given an issue does not exist
    When it is retrieved
    Then a '404 Not Found' status is returned

  Scenario: Retrieving all issues
    Given existing issues
    When all issues are retrieved
    Then a '200 OK' status is returned
    Then all issues are returned
    Then the collection should have a 'self' link

  Scenario: Retrieving all issues as Collection+Json
    Given existing issues
    When all issues are retrieved as Collection+Json
    Then a '200 OK' status is returned
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    Then Collection+Json is returned
    Then the href should be set
    Then all issues are returned
    Then the search query is returned

  Scenario: Searching issues
    Given existing issues
        When issues are searched
        Then a '200 OK' status is returned
        Then the collection should have a 'self' link
        Then the matching issues are returned

Feature: Creating issues
  Scenario: Creating a new issue
    Given a new issue
    When a POST request is made
    Then a '201 Created' status is returned
    Then the issue should be added
    Then the response location header will be set to the resource location

Feature: Updating issues
  Scenario: Updating an issue
    Given an existing issue
    When a PATCH request is made
    Then a '200 OK' is returned
    Then the issue should be updated

  Scenario: Updating an issue that does not exist
    Given an issue does not exist
    When a PATCH request is made
    Then a '404 Not Found' status is returned

Feature: Deleting issues
  Scenario: Deleting an issue
    Give an existing issue
    When a DELETE request is made
    Then a '200 OK' status is returned
    Then the issue should be removed

  Scenario: Deleting an issue that does not exist
    Given an issue does not exist
    When a DELETE request is made
    Then a '404 Not Found' status is returned

Feature: Processing issues
  Scenario: Closing an open issue
    Given an existing open issue
    When a POST request is made to the issue processor
    And the action is 'close'
    Then a '200 OK' status is returned
    Then the issue is closed
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  Scenario: Transitioning an open issue
    Given an existing open issue
    When a POST request is made to the issue processor
    And the action is 'transition'
    Then a '200 OK' status is returned
    The issue is closed

  Scenario: Closing a closed issue
    Given an existing closed issue
    When a POST request is made to the issue processor
    And the action is 'close'
    Then a '400 Bad Request' status is returned

  Scenario: Opening a closed issue
    Given an existing closed issue
    When a POST request is made to the issue processor
    And the action is 'open'
    Then a '200 OK' status is returned
    Then it is opened

  Scenario: Transitioning a closed issue
    Given an existing closed issue
    When a POST request is made to the issue processor
    And the action is 'transition'
    Then a '200 OK' status is returned
    Then it is opened

  Scenario: Opening an open issue
    Given an existing open issue
    When a POST request is made to the issue processor
    And the action is 'open'
    Then a '400 Bad Request' status is returned

  Scenario: Performing an invalid action
    Given an existing issue
    When a POST request is made to the issue processor
    And the action is not valid
    Then a '400 Bad Request' status is returned

  Scenario: Opening an issue that does not exist
    Given an issue does not exist
    When a POST request is made to the issue processor
    And the action is 'open'
    Then a '404 Not Found' status is returned

  Scenario: Closing an issue that does not exist
    Given an issue does not exist
    When a POST request is made to the issue processor
    And the action is 'close'
    Then a '404 Not Found' status is returned

  Scenario: Transitioning an issue that does not exist
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    Given an issue does not exist
    When a POST request is made to the issue processor
    And the action is 'transition'
    Then a '404 Not Found' status is returned

Throughout the remainder of the chapter, you will delve into all the tests and imple‐
mentation for retrieval, creation, updating, and deletion. There are additional tests for
issue processing, which will not be covered. The IssueProcessor controller, however,
will be covered, and all the code and implementation is available in the GitHub repo.

Feature: Retrieving Issues
This feature covers retrieving one or more issues from the API using an HTTP GET
method. The tests for this feature are comprehensive in particular because the responses
contain hypermedia, which is dynamically generated based on the state of the issues.

Open the RetrievingIssues.cs tests (WebApiBook.IssueTrackerApi.AcceptanceTests/
Features/RetrievingIssues.cs). Notice the class derives from IssuesFeature, demon‐
strated in Example 7-9 (IssuesFeature.cs). This class is a common base for all the tests.
It sets up an in-memory host for our API, which the tests can use to issue HTTP requests
against.

Example 7-9. IssuesFeature class
public abstract class IssuesFeature
{
    public Mock<IIssueStore> MockIssueStore;
    public HttpResponseMessage Response;
    public IssueLinkFactory IssueLinks;
    public IssueStateFactory StateFactory;
    public IEnumerable<Issue> FakeIssues;
    public HttpRequestMessage Request { get; private set; }
    public HttpClient Client;

    public IssuesFeature()
    {
        MockIssueStore = new Mock<IIssueStore>(); // <1>
        Request = new HttpRequestMessage();
        Request.Headers.Accept.Add(
            new MediaTypeWithQualityHeaderValue("application/vnd.issue+json"));
        IssueLinks = new IssueLinkFactory(Request);
        StateFactory = new IssueStateFactory(IssueLinks);
        FakeIssues = GetFakeIssues(); // <2>
        var config = new HttpConfiguration();
        WebApiConfiguration.Configure(
            config, MockIssueStore.Object);
        var server = new HttpServer(config); // <3>
        Client = new HttpClient(server); // <4>
    }
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    private IEnumerable<Issue> GetFakeIssues()
    {
        var fakeIssues = new List<Issue>();
        fakeIssues.Add(new Issue { Id = "1", Title = "An issue",
            Description = "This is an issue",
            Status = IssueStatus.Open });
        fakeIssues.Add(new Issue { Id = "2", Title = "Another issue",
            Description = "This is another issue",
            Status = IssueStatus.Closed });
        return fakeIssues;
    }
}

The IssuesFeature constructor initializes instances/mocks of the services previously
mentioned, which are common to all the tests:

• Creates an HttpRequest <1> and sets up test data <2>.
• Initializes an HttpServer, passing in the configuration object configured via the
Configure method <3>.

• Sets the Client property to a new HttpClient instance, passing the HttpServer in
the constructor <4>.

Example 7-10 demonstrates the WebApiConfiguration class.

Example 7-10. WebApiConfiguration class
public static class WebApiConfiguration
{

    public static void Configure(HttpConfiguration config,
    IIssueStore issueStore = null)
    {
        config.Routes.MapHttpRoute("DefaultApi", // <1>
            "{controller}/{id}", new { id = RouteParameter.Optional });
        ConfigureFormatters(config);
        ConfigureAutofac(config, issueStore);
    }

    private static void ConfigureFormatters(HttpConfiguration config)
    {
        config.Formatters.Add(new CollectionJsonFormatter()); // <2>
        JsonSerializerSettings settings = config.Formatters.JsonFormatter.
            SerializerSettings; // <3>
        settings.NullValueHandling = NullValueHandling.Ignore;
        settings.Formatting = Formatting.Indented;
        settings.ContractResolver =
            new CamelCasePropertyNamesContractResolver();
        config.Formatters.JsonFormatter.SupportedMediaTypes.Add(
            new MediaTypeHeaderValue("application/vnd.issue+json"));
    }
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    private static void ConfigureAutofac(HttpConfiguration config,
             IIssueStore issueStore)
    {
        var builder = new ContainerBuilder(); // <4>
        builder.RegisterApiControllers(typeof(IssueController).Assembly);

        if (issueStore == null) // <5>
            builder.RegisterType<InMemoryIssueStore>().As<IIssueStore>().
                             InstancePerLifetimeScope();
        else
            builder.RegisterInstance(issueStore);

        builder.RegisterType<IssueStateFactory>(). // <6>
            As<IStateFactory<Issue, IssueState>>().InstancePerLifetimeScope();
        builder.RegisterType<IssueLinkFactory>().InstancePerLifetimeScope();
        builder.RegisterHttpRequestMessage(config); // <7>
        var container = builder.Build(); // <8>
        config.DependencyResolver = new AutofacWebApiDependencyResolver(container);
    }
}

The WebApiConfiguration.Configure method in Example 7-10 does the following:

• Registers the default route <1>.
• Adds the Collection+Json formatter <2>.
• Configures the default JSON formatter to ignore nulls, force camel casing for prop‐

erties, and support the Issue media type <3>.
• Creates an Autofac ContainerBuilder and registers all controllers <4>.
• Registers the store using the passed-in store instance if provided (used for passing

in a mock instance) <5> and otherwise defaults to the InMemoryStore.
• Registers the remaining services <6>.
• Wires up Autofac to inject the current HttpRequestMessage as a dependency <7>.

This enables services such as the IssueLinkFactory to get the request.
• Creates the container and passes it to the Autofac dependency resolver <8>.

Retrieving an Issue
The first set of tests verifies retrieval of an individual issue and that all the necessary
data is present:

Scenario: Retrieving an existing issue
  Given an existing issue
  When it is retrieved
  Then a '200 OK' status is returned
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  Then it is returned
  Then it should have an id
  Then it should have a title
  Then it should have a description
  Then it should have a state
  Then it should have a 'self' link
  Then it should have a 'transition' link

The associated tests are in Example 7-11.

Example 7-11. Retrieving an issue
[Scenario]
public void RetrievingAnIssue(IssueState issue, Issue fakeIssue)
{
    "Given an existing issue".
        f(() =>
            {
                fakeIssue = FakeIssues.FirstOrDefault();
                MockIssueStore.Setup(i => i.FindAsync("1")).
                    Returns(Task.FromResult(fakeIssue)); // <1>
            });
    "When it is retrieved".
        f(() =>
            {
                Request.RequestUri = _uriIssue1; // <2>
                Response = Client.SendAsync(Request).Result; // <3>
                issue = Response.Content.ReadAsAsync<IssueState>().Result; // <4>
            });
    "Then a '200 OK' status is returned".
        f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.OK)); // <5>
    "Then it is returned".
        f(() => issue.ShouldNotBeNull()); // <6>
    "Then it should have an id".
        f(() => issue.Id.ShouldEqual(fakeIssue.Id)); // <7>
    "Then it should have a title".
        f(() => issue.Title.ShouldEqual(fakeIssue.Title)); // <8>
    "Then it should have a description".
        f(() => issue.Description.ShouldEqual(fakeIssue.Description)); // <9>
    "Then it should have a state".
        f(() => issue.Status.ShouldEqual(fakeIssue.Status)); // <10>
    "Then it should have a 'self' link".
        f(() =>
            {
                var link = issue.Links.FirstOrDefault(l => l.Rel ==
                                IssueLinkFactory.Rels.Self);
                link.ShouldNotBeNull(); // <11>
                link.Href.AbsoluteUri.ShouldEqual(
                    "http://localhost/issue/1"); // <12>
            });
    "Then it should have a transition link".
        f(() =>
            {
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                var link = issue.Links.FirstOrDefault(l =>
                    l.Rel == IssueLinkFactory.Rels.IssueProcessor &&
                    l.Action == IssueLinkFactory.Actions.Transition);
                link.ShouldNotBeNull(); // <13>
                link.Href.AbsoluteUri.ShouldEqual(
                    "http://localhost/issueprocessor/1?action=transition"); // <14>
            });
}

Understanding the tests
For those who are not familiar with XBehave.NET, the test syntax used here might look
confusing. In XBehave, tests for a specific scenario are grouped together in a single class
method, which is annotated with a [Scenario] attribute. Each method can have one or
more parameters (e.g., issue and fakeIssue), which XBehave will set to their default
values rather than defining variables inline.

Within each method there is one more test that will be executed. XBehave allows a “free
from string” syntax that allows for describing the test in plain English. The f() function
is an extension method of System.String, which takes a lambda. The string provided
is only documentation for the user reading the test code and/or viewing the results—it
has no meaning to XBehave itself. In practice, Gherkin syntax will be used within the
strings, but this is not actually required. XBehave cares only about the lambdas, which
it executes in the order that they are defined.

Another common pattern you will see in the tests is the usage of the Should library. This
library introduces a set of extension methods that start with Should and perform as‐
sertions. The syntax it provides is more terse than Assert methods. In the retrieving
issue tests, ShouldEqual and ShouldNotBeNull method calls are both examples of using
this library.

Here is an overview of what the preceding tests perform:

• Sets up the mock store to return an issue <1>.
• Sets the request URI to the issue resource <2>.
• Sends the request <3> and extracts the issue from the response <4>.
• Verifies that the status code is 200 <5>.
• Verifies that the issue is not null <6>.
• Verifies that the id <7>, title <8>, description <9>, and status <10> match the

issue that was passed to the mock store.
• Verifies that a Self link was added, pointing to the issue resource.
• Verifies that a Transition link was added, pointing to the issue processor resource.
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Requests for an individual issue are handled by the Get overload on the IssueControl
ler, as shown in Example 7-12.

Example 7-12. IssueController Get overload method
public async Task<HttpResponseMessage> Get(string id)
{
    var result = await _store.FindAsync(id); // <1>
    if (result == null)
        return Request.CreateResponse(HttpStatusCode.NotFound); // <2>

    return Request.CreateResponse(HttpStatusCode.OK,
    _stateFactory.Create(result)); // <3>
}

This method queries for a single issue <1>, returns a 404 Not Found status code if the
resource cannot be found <2>, and returns only a single item rather then a higher-level
document <3>.

As you’ll see, most of these tests are actually not testing the controller itself but rather
the IssueStateFactory.Create method shown earlier in Example 7-6.

Retrieving Open and Closed Issues
Scenario: Retrieving an open issue
  Given an existing open issue
  When it is retrieved
  Then it should have a 'close' link

Scenario: Retrieving a closed issue
  Given an existing closed issue
  When it is retrieved
  Then it should have an 'open' link

The scenario tests can be seen in Examples 7-13 and 7-14.

The next set of tests are very similar, checking for a close link on an open issue
(Example 7-13) and an open link on a closed issue (Example 7-14).

Example 7-13. Retrieving an open issue
[Scenario]
public void RetrievingAnOpenIssue(Issue fakeIssue, IssueState issue)
{
    "Given an existing open issue".
        f(() =>
            {
                fakeIssue = FakeIssues.Single(i =>
                    i.Status == IssueStatus.Open);
                MockIssueStore.Setup(i => i.FindAsync("1")).Returns(
                    Task.FromResult(fakeIssue)); // <1>
            });
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    "When it is retrieved".
        f(() =>
            {
                Request.RequestUri = _uriIssue1; // <2>
                issue = Client.SendAsync(Request).Result.Content.
                    ReadAsAsync<IssueState>().Result; // <3>
            });
    "Then it should have a 'close' action link".
        f(() =>
            {
                var link = issue.Links.FirstOrDefault(
                    l => l.Rel == IssueLinkFactory.Rels.IssueProcessor &&
                    l.Action == IssueLinkFactory.Actions.Close); // <4>
                link.ShouldNotBeNull();
                link.Href.AbsoluteUri.ShouldEqual(
                    "http://localhost/issueprocessor/1?action=close");
            });
}

Example 7-14. Retrieving a closed issue
public void RetrievingAClosedIssue(Issue fakeIssue, IssueState issue)
{
    "Given an existing closed issue".
        f(() =>
            {
                fakeIssue = FakeIssues.Single(i =>
                    i.Status == IssueStatus.Closed);
                MockIssueStore.Setup(i => i.FindAsync("2")).Returns(
                    Task.FromResult(fakeIssue)); // <1>
            });
    "When it is retrieved".
        f(() =>
            {
                Request.RequestUri = _uriIssue2; // <2>
                issue = Client.SendAsync(Request).Result.Content.
                    ReadAsAsync<IssueState>().Result; // <3>
            });
    "Then it should have a 'open' action link".
        f(() =>
            {
                var link = issue.Links.FirstOrDefault(
                    l => l.Rel == IssueLinkFactory.Rels.IssueProcessor &&
                    l.Action == IssueLinkFactory.Actions.Open); // <4>
                link.ShouldNotBeNull();
                link.Href.AbsoluteUri.ShouldEqual(
                    "http://localhost/issueprocessor/2?action=open");
            });
}

The implementation for each test is also very similar:
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• Sets up the mock store to return the open (id=1) or closed issue (id=2) appropriate
for the test <1>.

• Sets the request URI for the resource being retrieved <2>.
• Sends the request and captures the issue in the result <3>.
• Verifies that the appropriate Open or Close link is present <4>.

Similar to the previous test, this test also verifies logic present in the IssueStateFacto
ry, which is shown in Example 7-15. It adds the appropriate links depending on the
status of the issue.

Example 7-15. IssueStateFactory Create method
public IssueState Create(Issue issue)
{
    ...
    switch (model.Status) {
        case IssueStatus.Closed:
            model.Links.Add(_links.Open(issue.Id));
            break;
        case IssueStatus.Open:
            model.Links.Add(_links.Close(issue.Id));
            break;
    }

    return model;
}

Retrieving an Issue That Does Not Exist
The next scenario verifies the system returns a 404 Not Found if the resource does not
exist:

  Scenario: Retrieving an issue that does not exist
    Given an issue does not exist
    When it is retrieved
    Then a '404 Not Found' status is returned

The scenario tests are in Example 7-16.

Example 7-16. Retrieving an issue that does not exist
[Scenario]
public void RetrievingAnIssueThatDoesNotExist()
{
    "Given an issue does not exist".
        f(() => MockIssueStore.Setup(i =>
            i.FindAsync("1")).Returns(Task.FromResult((Issue)null))); // <1>
    "When it is retrieved".
        f(() =>
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            {
                Request.RequestUri = _uriIssue1; // <2>
                Response = Client.SendAsync(Request).Result; // <3>
            });
    "Then a '404 Not Found' status is returned".
        f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.NotFound)); // <4>
}

How the tests work:

• Sets up the store to return a null issue <1>. Notice the Task.FromResult extension
is used to easily create a Task that contains a null object in its result.

• Sets the request URI <2>.
• Issues the request and captures the response <3>.
• Verifies the code is verified to be HttpStatusCode.NotFound <4>.

In the IssueController.Get method, this scenario is handled with the code in
Example 7-17.

Example 7-17. IssueController Get method returning a 404
if (result == null)
    return Request.CreateResponse(HttpStatusCode.NotFound);

Retrieving All Issues
This scenario verifies that the issue collection can be properly retrieved:

Scenario: Retrieving all issues
  Given existing issues
  When all issues are retrieved
  Then a '200 OK' status is returned
  Then all issues are returned
  Then the collection should have a 'self' link

The tests for this scenario are shown in Example 7-18.

Example 7-18. Retrieving all issues
private Uri _uriIssues = new Uri("http://localhost/issue");
private Uri _uriIssue1 = new Uri("http://localhost/issue/1");
private Uri _uriIssue2 = new Uri("http://localhost/issue/2");

[Scenario]
public void RetrievingAllIssues(IssuesState issuesState)
{
    "Given existing issues".
        f(() => MockIssueStore.Setup(i => i.FindAsync()).Returns(
            Task.FromResult(FakeIssues))); // <1>
    "When all issues are retrieved".
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        f(() =>
            {
                Request.RequestUri = _uriIssues; // <2>
                Response = Client.SendAsync(Request).Result; // <3>
                issuesState = Response.Content.
                    ReadAsAsync<IssuesState>().Result; // <4>
            });
    "Then a '200 OK' status is returned".
        f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.OK)); // <5>
    "Then they are returned".
        f(() =>
            {
                issuesState.Issues.FirstOrDefault(i => i.Id == "1").
                    ShouldNotBeNull(); // <6>
                issuesState.Issues.FirstOrDefault(i => i.Id == "2").
                    ShouldNotBeNull();
            });
    "Then the collection should have a 'self' link".
        f(() =>
            {
                var link = issuesState.Links.FirstOrDefault(
                    l => l.Rel == IssueLinkFactory.Rels.Self); // <7>
                link.ShouldNotBeNull();
                link.Href.AbsoluteUri.ShouldEqual("http://localhost/issue");
            });
}

These tests verify that a request sent to /issue returns all the issues:

• Sets up the mock store to return the collection of fake issues <1>.
• Sets the request URI to the issue resource <2>.
• Sends the request and captures the response <3>.
• Reads the response content and converts it to an IssuesState instance <4>. The
ReadAsAsync method uses the formatter associated with the HttpContent instance
to manufacture an object from the contents.

• Verifies that the returned status is OK <5>.
• Verifies that the correct issues are returned <6>.
• Verifies that the Self link is returned <7>.

On the server, the issue resource is handled by the IssueController.cs file (WebApi‐
Book.IssueTrackerApi/Controllers/IssueController). The controller takes an issues store,
an issue state factory, and an issue link factory as dependencies (as shown in
Example 7-19).
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Example 7-19. IssueController constructor
public class IssueController : ApiController
{
    private readonly IIssueStore _store;
    private readonly IStateFactory<Issue, IssueState> _stateFactory;
    private readonly IssueLinkFactory _linkFactory;

    public IssueController(IIssueStore store,
        IStateFactory<Issue, IssueState> stateFactory,
        IssueLinkFactory linkFactory)
    {
        _store = store;
        _stateFactory = stateFactory;
        _linkFactory = linkFactory;
    }
    ...
}

The request for all issues is handled by the parameterless Get method (Example 7-20).

Example 7-20. IssueController Get method
public async Task<HttpResponseMessage> Get()
{
    var result = await _store.FindAsync(); // <1>
    var issuesState = new IssuesState(); // <2>
    issuesState.Issues = result.Select(i => _stateFactory.Create(i)); // <3>
    issuesState.Links.Add(new Link{
        Href=Request.RequestUri, Rel = LinkFactory.Rels.Self}); // <4>

    return Request.CreateResponse(HttpStatusCode.OK, issuesState); // <5>
}

Notice the method is marked with the async modifier and returns Task<HttpRespon
seMessage>. By default, API controller operations are sync; thus, as the call is executing
it will block the calling thread. In the case of operations that are making I/O calls, this
is bad—it will reduce the number of threads that can handle incoming requests. In the
case of the issue controller, all of the calls involve I/O, so using async and returning a
Task make sense. I/O-intensive operations are then awaited via the await keyword.

Here is what the code is doing:

• First, an async call is made to the issue store FindAsync method to get the issues <1>.
• An IssuesState instance is created for carrying issue data <2>.
• The issues collection is set, but invokes the Create method on the state factory for

each issue <3>.
• The Self link is added via the URI of the incoming request <4>.
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• The response is created, passing the IssuesState instance for the content <5>.

In the previous snippet, the Request.CreateResponse method is used to return an
HttpResponseMessage. You might ask, why not just return a model instead? Returning
an HttpResponseMessage allows for directly manipulating the components of the
HttpResponse, such as the status and the headers. Although currently the response
headers are not modified for this specific controller action, this will likely happen in the
future. You will also see that the rest of the actions do manipulate the response.

Where Is the Proper Place to Handle Hypermedia?
The following question often arises: where in the system should hypermedia controls
be applied? Should they be handled in the controller, or via the pipeline with a message
handler, filter, or formatter? There is no one right answer—all of these are valid places
to handle hypermedia—but there are trade-offs to consider:

• If links are handled in a controller, they are more explicit/obvious and easier to step
through.

• If links are handled in the pipeline, controller actions are leaner and have less logic.
• Message handlers, filters, and controllers have easy access to the request, which they

can use for link generation.

In this book, we’ve chosen to handle the logic in the controller, either inline as in the
Get method for retrieving multiple issues, or via an injected service as in the Get method
for a single issue. The reasoning for this is that the link logic is more explicit/closer to
the controller. The controller’s job is to translate between the business domain and the
HTTP world. As links are an HTTP-specific concern, handling them in a controller is
perfectly reasonable.

That being said, the other approaches are workable and there is nothing fundamentally
wrong with using them.

Retrieving All Issues as Collection+Json
As mentioned in the previous chapter, Collection+Json is a format that is well suited
for managing and querying lists of data. The issue resource supports Collection
+Json for requests on resources that return multiple items. This test verifies that it can
return Collection+Json responses.

The next scenario verifies that the API properly handles requests for Collection+Json:

  Scenario: Retrieving all issues as Collection+Json
    Given existing issues
    When all issues are retrieved as Collection+Json
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    Then a '200 OK' status is returned
    Then Collection+Json is returned
    Then the href should be set
    Then all issues are returned
    Then the search query is returned

The test in Example 7-21 issues such a request and validates that the correct format is
returned.

Example 7-21. Retrieving all issues as Collection+Json
[Scenario]
public void RetrievingAllIssuesAsCollectionJson(IReadDocument readDocument)
{
    "Given existing issues".
        f(() => MockIssueStore.Setup(i => i.FindAsync()).
            Returns(Task.FromResult(FakeIssues)));
    "When all issues are retrieved as Collection+Json".
        f(() =>
            {
                Request.RequestUri = _uriIssues;
                Request.Headers.Accept.Clear(); // <1>
                Request.Headers.Accept.Add(
                    new MediaTypeWithQualityHeaderValue(
                        "application/vnd.collection+json"));
                Response = Client.SendAsync(Request).Result;
                readDocument = Response.Content.ReadAsAsync<ReadDocument>(
                    new[] {new CollectionJsonFormatter()}).Result; // <2>
            });
    "Then a '200 OK' status is returned".
       f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.OK)); // <3>
    "Then Collection+Json is returned".
        f(() => readDocument.ShouldNotBeNull()); // <4>
    "Then the href should be set".
        f(() => readDocument.Collection.Href.AbsoluteUri.ShouldEqual(
            "http://localhost/issue")); // <5>
    "Then all issues are returned"
        f(() =>
            {
                readDocument.Collection.Items.FirstOrDefault(
                    i=>i.Href.AbsoluteUri=="http://localhost/issue/1").
                                        ShouldNotBeNull(); // <6>
                readDocument.Collection.Items.FirstOrDefault(
                    i=>i.Href.AbsoluteUri=="http://localhost/issue/2").
                                        ShouldNotBeNull();
            });
    "Then the search query is returned".
        f(() => readDocument.Collection.Queries.SingleOrDefault(
            q => q.Rel == IssueLinkFactory.Rels.SearchQuery).
            ShouldNotBeNull()); // <7>
}

After the standard setup, the tests do the following:
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• Sets the Accept header to application/vnd.collection+json and sends the re‐
quest <1>.

• Reads the content using the CollectionJson packages’ ReadDocument <2>.
• Verifies that a 200 OK status is returned <3>.
• Verifies that the returned document is not null (this means valid Collection
+Json was returned) <4>.

• Checks that the document’s href (self) URI is set <5>.
• Checks that the expected items are present <6>.
• Checks that the search query is present in the Queries collection <7>.

On the server, the same method as in the previous test is invoked—that is, IssueCon
troller.Get(). However, because the CollectionJsonFormatter is used, the returned
IssuesState object will be written via the IReadDocument interface that it implements,
as shown previously in Example 7-4.

Searching Issues
This scenario validates that the API allows users to perform a search and that the results
are returned:

  Scenario: Searching issues
    Given existing issues
        When issues are searched
        Then a '200 OK' status is returned
        Then the collection should have a 'self' link
        Then the matching issues are returned

The tests for this scenario are shown in Example 7-22.

Example 7-22. Searching issues
[Scenario]
public void SearchingIssues(IssuesState issuesState)
{
    "Given existing issues".
        f(() => MockIssueStore.Setup(i => i.FindAsyncQuery("another"))
            .Returns(Task.FromResult(FakeIssues.Where(i=>i.Id == "2")))); // <1>
    "When issues are searched".
        f(() =>
        {
            Request.RequestUri = new Uri(_uriIssues, "?searchtext=another");
            Response = Client.SendAsync(Request).Result;
            issuesState = Response.Content.ReadAsAsync<IssuesState>().Result; // <2>
        });
    "Then a '200 OK' status is returned".
        f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.OK)); // <3>
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    "Then the collection should have a 'self' link".
        f(() =>
        {
            var link = issuesState.Links.FirstOrDefault(
                l => l.Rel == IssueLinkFactory.Rels.Self); // <4>
            link.ShouldNotBeNull();
            link.Href.AbsoluteUri.ShouldEqual(
                "http://localhost/issue?searchtext=another");
        });
    "Then the matching issues are returned".
        f(() =>
            {
                var issue = issuesState.Issues.FirstOrDefault(); // <5>
                issue.ShouldNotBeNull();
                issue.Id.ShouldEqual("2");
        });
}

Here’s how the tests work:

• Sets the mock issue store to return issue 2 when FindAsyncQuery is invoked <1>.
• Appends the query string to the query URI, issues a request, and reads the content

as an IssuesState instance <2>.
• Verifies that a 200 OK status is returned <3>.
• Verifies that the Self link is set for collection <4>.
• Verifies that the expected issue is returned <5>.

The code for the search functionality is shown in Example 7-23.

Example 7-23. IssueController GetSearch method
public async Task<HttpResponseMessage> GetSearch(string searchText) // <1>
{
    var issues = await _store.FindAsyncQuery(searchText); // <2>
    var issuesState = new IssuesState();
    issuesState.Issues = issues.Select(i => _stateFactory.Create(i)); // <3>
    issuesState.Links.Add( new Link {
        Href = Request.RequestUri, Rel = LinkFactory.Rels.Self }); // <4>
    return Request.CreateResponse(HttpStatusCode.OK, issuesState); // <5>
}

• The method name is GetSearch <1>. ASP.NET Web API’s selector matches the
current HTTP method conventionally against methods that start with the same
HTTP method name. Thus, it is reachable by an HTTP GET. The parameter of the
method matches against the query string param searchtext.

• Issues matching the search are retrieved with the FindAsyncQuery method <2>.
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• An IssuesState instance is created and its issues are populated with the result of
the search <3>.

• A Self link is added, pointing to the original request <4>.
• An OK response is returned with the issues as the payload <5>.

Similar to requests for all issues, this resource also supports return‐
ing a Collection+Json representation.

This finishes off all of the scenarios for the issue retrieval feature; now, on to creation!

Feature: Creating Issues
This feature contains a single scenario that covers when a client creates a new issue using
an HTTP POST:

  Scenario: Creating a new issue
    Given a new issue
    When a POST request is made
    Then the issue should be added
    Then a '201 Created' status is returned
    Then the response location header will be set to the new resource location

The test is in Example 7-24.

Example 7-24. Creating issues
[Scenario]
public void CreatingANewIssue(dynamic newIssue)
{
    "Given a new issue".
        f(() =>
            {
                newIssue = new JObject();
                newIssue.description = "A new issue";
                newIssue.title = "NewIssue"; // <1>
                MockIssueStore.Setup(i => i.CreateAsync(It.IsAny<Issue>())).
                    Returns<Issue>(issue=>
                        {
                            issue.Id = "1";
                            return Task.FromResult("");
                        }); // <2>
            });
    "When a POST request is made".
        f(() =>
            {
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                Request.Method = HttpMethod.Post;
                Request.RequestUri = _issues;
                Request.Content = new ObjectContent<dynamic>(
                    newIssue, new JsonMediaTypeFormatter()); // <3>
                Response = Client.SendAsync(Request).Result;
            });
    "Then the issue should be added".
        f(() => MockIssueStore.Verify(i => i.CreateAsync(
        It.IsAny<Issue>()))); // <4>
    "Then a '201 Created' status is returned".
        f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.Created)); // <5>
    "Then the response location header will be set to the resource location".
        f(() => Response.Headers.Location.AbsoluteUri.ShouldEqual(
            "http://localhost/issue/1")); // <6>
}

Here’s how the tests work:

• Creates a new issue to be sent to the server <1>.
• Configures the mock store to set the issue’s Id <2>. Notice the call to Task.FromRe
sult. The CreateAsync method expects a Task to be returned. This is a simple way
to create a dummy task. You will see the same approach is used in other tests if the
method on the store returns a Task.

• Configures the request to be a POST with the request content being set to the new
issue <3>. Notice here that instead of using a static CLR type like Issue, it uses a
JObject instance (from Json.NET) cast to dynamic. We can use a similar approach
for staying typeless on the server, which you’ll see shortly.

• Verifies that the CreateAsync method was called to create the issue <4>.
• Verifies that the status code was set to a 201 in accordance with the HTTP spec

(covered in Chapter 1) <5>.
• Verifies that the location header is set to the location of the created resource <6>.

The Web Is Typeless
In Example 7-24 the client creates a dynamic type to send to the server rather than a
static type. This may make a whole bunch of people in the room ask, “Where is my static
type?” It is true that .NET is a (mostly) static language; the Web, however, is typeless.
As we saw in Chapter 1, the foundation of the Web is message based, not type based.
Clients send messages to servers in a set of known formats (media types). A media type
describes the structure of a message; it is not the same as a static type in a programming
stack like .NET. This typelessness is not an accident; it is by design.
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Because the Web is typeless, resources are easily accessible to the largest possible set of
clients and servers. Typelessness is also a big factor in allowing clients and servers to
independently evolve and allowing side-by-side versioning. Servers can understand new
elements in the messages they receive without requiring existing clients to upgrade. The
message formats can even evolve in ways that are breaking but still don’t force clients
to upgrade. In a typed world, this is not possible due to the inherent constraints that a
type imposes.

SOAP Services are an example of a protocol that introduced typing to the Web, and that
was wrought with issues. One of the biggest pains you hear in practice from companies
that implemented SOAP Services is around the clients. Communication with a SOAP
Service requires a WSDL document describing the operations and the types. Whenever
the services change in a significant way, they generally break all the clients. This either
requires clients to upgrade, or calls for a parallel version of the service to be deployed,
which newer clients can access only by getting the WSDL.

All this being said, this is not a recommendation to not use types at all as a more
developer-friendly way to access API requests and responses. Those types should not,
however, become a requirement for interacting with the system, and there is nothing
wrong with using dynamic types (in fact, there may be cases where it is even advanta‐
geous).

The implementation within the controller is shown in Example 7-25.

Example 7-25. IssueController Post method
public async Task<HttpResponseMessage> Post(dynamic newIssue) // <1>
{
    var issue = new Issue {
        Title = newIssue.title, Description = newIssue.description}; // <2>
    await _store.CreateAsync(issue); // <3>
    var response = Request.CreateResponse(HttpStatusCode.Created); // <4>
    response.Headers.Location = _linkFactory.Self(issue.Id).Href; // <5>
    return response; // <6>.
}

The code works as follows:

• The method itself is named Post in order to match the POST HTTP method <1>.
Similarly to the client in test, this method accepts dynamic. On the server,
Json.NET will create a JObject instance automatically if it sees dynamic. Though
JSON is supported by default, we could add custom formatters for supporting al‐
ternative media types like application/x-www-form-urlencoded.

• We create a new issue by passing the properties from the dynamic instance <2>.
• The CreateAsync method is invoked on the store to store the issue <3>.
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• The response is created to return a 201 Created status <4>.
• We set the location header on the response by invoking the Self method of the
_linkFactory <5>, and the response is returned <6>.

This covers creation; next, on to updating!

Feature: Updating Issues
This feature covers updating issues using HTTP PATCH. PATCH was chosen because it
allows the client to send partial data that will modify the existing resource. PUT, on the
other hand, completely replaces the state of the resource.

Updating an Issue
This scenario verifies that when a client sends a PATCH request, the corresponding re‐
source is updated:

  Scenario: Updating an issue
    Given an existing issue
    When a PATCH request is made
    Then a '200 OK' is returned
    Then the issue should be updated

The test for this scenario is shown in Example 7-26.

Example 7-26. IssueController PATCH method
[Scenario]
public void UpdatingAnIssue(Issue fakeIssue)
{
    "Given an existing issue".
        f(() =>
            {
                fakeIssue = FakeIssues.FirstOrDefault();
                MockIssueStore.Setup(i => i.FindAsync("1")).Returns(
                    Task.FromResult(fakeIssue)); // <1>
                MockIssueStore.Setup(i => i.UpdateAsync(It.IsAny<Issue>())).
                    Returns(Task.FromResult(""));
            });
    "When a PATCH request is made".
        f(() =>
            {
                dynamic issue = new JObject(); // <2>
                issue.description = "Updated description";
                Request.Method = new HttpMethod("PATCH"); // <3>
                Request.RequestUri = _uriIssue1;
                Request.Content = new ObjectContent<dynamic>(issue,
                    new JsonMediaTypeFormatter()); // <4>
                Response = Client.SendAsync(Request).Result;
            });
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    "Then a '200 OK' status is returned".
        f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.OK)); // <5>
    "Then the issue should be updated".
        f(() => MockIssueStore.Verify(i =>
            i.UpdateAsync(It.IsAny<Issue>()))); // <6>
    "Then the descripton should be updated".
        f(() => fakeIssue.Description.ShouldEqual("Updated description")); // <7>
    "Then the title should not change".
        f(() => fakeIssue.Title.ShouldEqual(title)); // <8>
}

Here’s how the tests work:

• Sets up the mock store to return the expected issue that will be updated when
FindAsync is called and to handle the call to UpdateAsync <1>.

• News up a JObject instance, and only the description to be changed is set <2>.
• Sets the request method to PATCH <3>. Notice here an HttpMethod instance is con‐

structed, passing in the method name. This is the approach to use when you are
using an HTTP method that does not have a predefined static property off the
HttpMethod class, such as GET, PUT, POST, and DELETE.

• News up an ObjectContent<dynamic> instance with the issue and sets it to the
request content. The request is then sent <4>. Notice the usage of dynamic: it works
well for PATCH because it allows the client to just send the properties of the issue
that it wants to update.

• Validates that the status code is 200 OK <5>.
• Validates that the UpdateAsync method was called, passing the issue <6>.
• Validates that the description of the issue was updated <7>.
• Validates that the title has not changed <8>.

The implementation is handled in the Patch method of the controller, as Example 7-27
demonstrates.

Example 7-27. IssueController Patch method
public async Task<HttpResponseMessage> Patch(string id, dynamic issueUpdate) // <1>
{
    var issue = await _store.FindAsync(id); // <2>
    if (issue == null) // <3>
        return Request.CreateResponse(HttpStatusCode.NotFound);

    foreach (JProperty prop in issueUpdate) // <4>
    {
        if (prop.Name == "title")
            issue.Title = prop.Value.ToObject<string>();
        else if (prop.Name == "description")
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            issue.Description = prop.Value.ToObject<string>();
    }
    await _store.UpdateAsync(issue); // <5>
    return Request.CreateResponse(HttpStatusCode.OK); // <6>
}

Here’s what the code does:

• The method accepts two parameters <1>. The id comes from the URI (http://local‐
host/issue/1, in this case) of the request. The issueUpdate, however, comes from
the JSON content of the request.

• The issue to be updated is retrieved from the store <2>.
• If no issue is found, a 404 Not Found is immediately returned <3>.
• A loop walks through the properties of issueUpdate, updating only those proper‐

ties that are present <4>.
• The store is invoked to update the issue <5>.
• A 200 OK status is returned <6>.

Updating an Issue That Does Not Exist
This scenario ensures that when a client sends a PATCH request for a missing or deleted
issue, a 404 Not Found status is returned:

  Scenario: Updating an issue that does not exist
    Given an issue does not exist
    When a PATCH request is made
    Then a '404 Not Found' status is returned

We’ve already seen the code for this in the controller in the previous section, but the
test in Example 7-28 verifies that it actually works!

Example 7-28. Updating an issue that does not exist
[Scenario]
public void UpdatingAnIssueThatDoesNotExist()
{
    "Given an issue does not exist".
        f(() => MockIssueStore.Setup(i => i.FindAsync("1")).
                Returns(Task.FromResult((Issue)null))); // <1>
    "When a PATCH request is made".
        f(() =>
            {
                Request.Method = new HttpMethod("PATCH"); // <2>
                Request.RequestUri = _uriIssue1;
                Request.Content = new ObjectContent<dynamic>(new JObject(),
                    new JsonMediaTypeFormatter()); // <3>
                response = Client.SendAsync(Request).Result; // <4>
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            });
    "Then a 404 Not Found status is returned".
        f(() => response.StatusCode.ShouldEqual(HttpStatusCode.NotFound)); // <5>
}

Here’s how the tests work:

• Sets up the mock store to return a null issue when FindAsync is called.
• Sets the request method to PATCH <2>.
• Sets the content to an empty JObject instance. The content here really doesn’t

matter <3>.
• Sends the request <4>.
• Validates that the 404 Not Found status is returned.

This completes the section on updates.

Feature: Deleting Issues
This feature covers handling of HTTP DELETE requests for removing issues.

Deleting an Issue
This scenario verifies that when a client sends a DELETE request, the corresponding issue
is removed:

  Scenario: Deleting an issue
    Give an existing issue
    When a DELETE request is made
    Then a '200 OK' status is returned
    Then the issue should be removed

The tests (Example 7-29) for this scenario are very straightforward, using concepts
already covered throughout the chapter.

Example 7-29. Deleting an issue
[Scenario]
public void DeletingAnIssue(Issue fakeIssue)
{
    "Given an existing issue".
        f(() =>
            {
                fakeIssue = FakeIssues.FirstOrDefault();
                MockIssueStore.Setup(i => i.FindAsync("1")).Returns(
                    Task.FromResult(fakeIssue)); // <1>
                MockIssueStore.Setup(i => i.DeleteAsync("1")).Returns(
                    Task.FromResult(""));
            });
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    "When a DELETE request is made".
        f(() =>
            {
                Request.RequestUri = _uriIssue;
                Request.Method = HttpMethod.Delete; // <2>
                Response = Client.SendAsync(Request).Result; // <3>
            });
    "Then the issue should be removed".
        f(() => MockIssueStore.Verify(i => i.DeleteAsync("1"))); // <4>
    "Then a '200 OK status' is returned".
        f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.OK)); // <5>
}

Here’s how the tests work:

• Configures the mock issue store to return the issue to be deleted when FindAsync
is called, and to handle the DeleteAsync call <1>.

• Sets the request to use DELETE <2> and sends it <3>.
• Validates that the DeleteAsync method was called, passing in the Id <4>.
• Validates that the response is a 200 OK <5>.

The implementation can be seen in Example 7-30.

Example 7-30. IssueController Delete method
public async Task<HttpResponseMessage> Delete(string id) // <1>
{
    var issue = await _store.FindAsync(id); // <2>
    if (issue == null)
        return Request.CreateResponse(HttpStatusCode.NotFound); // <3>
    await _store.DeleteAsync(id); // <4>
    return Request.CreateResponse(HttpStatusCode.OK); // <5>
}

The code does the following:

• The method name is Delete to match against an HTTP DELETE <1>. It accepts the
id of the issue to be deleted.

• The issue is retrieved from the store for the selected id <2>.
• If the issue does not exist, a 404 Not Found status is returned <3>.
• The DeleteAsync method is invoked on the store to remove the issue <4>.
• A 200 OK is returned to the client <5>.
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Deleting an Issue That Does Not Exist
This scenario verifies that if a client sends a DELETE request for a nonexistent issue, a
404 Not Found status is returned:

  Scenario: Deleting an issue that does not exist
    Given an issue does not exist
    When a DELETE request is made
    Then a '404 Not Found' status is returned

The test in Example 7-31 is very similar to the previous test for updating a missing issue.

Example 7-31. Deleting an issue that does not exist
[Scenario]
public void DeletingAnIssueThatDoesNotExist()
{
    "Given an issue does not exist".
        f(() => MockIssueStore.Setup(i => i.FindAsync("1")).Returns(
            Task.FromResult((Issue) null))); // <1>
    "When a DELETE request is made".
        f(() =>
            {
                Request.RequestUri = _uriIssue;
                Request.Method = HttpMethod.Delete; // <2>
                Response = Client.SendAsync(Request).Result;
            });
    "Then a '404 Not Found' status is returned".
        f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.NotFound)); // <3>
}

Here’s how the tests work:

• Sets up the mock store to return null when the issue is requested <1>.
• Sends the request to delete the resource <2>.
• Validates that a 404 Not Found is returned <3>.

Feature: Processing Issues
The Tests
As mentioned earlier, discussing the tests for this feature is beyond the scope of this
chapter. However, you now have all the concepts necessary to understand the code,
which can be found in the GitHub repo.

Separating out processing resources provides better separation for the API implemen‐
tation, making the code more readable and easier to maintain. It also helps with evol‐
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vabililty, as you can make changes to handle processing without needing to touch the
IssueController, which is also fulfilling the Single Responsibility Principle.

The Implementation
The issue processor resources are backed by the IssueProcessorController shown in
Example 7-32.

Example 7-32. IssueProcessorController
public class IssueProcessorController : ApiController
{
    private readonly IIssueStore _issueStore;

    public IssueProcessorController(IIssueStore issueStore)
    {
        _issueStore = issueStore; // <1>
    }

    public async Task<HttpResponseMessage> Post(string id, string action) // <2>
    {
        bool isValid = IsValidAction(action); // <3>
        Issue issue = null;

        if (isValid)
        {
            issue = await _issueStore.FindAsync(id); // <4>

            if (issue == null)
                return Request.CreateResponse(HttpStatusCode.NotFound); // <5>

            if ((action == IssueLinkFactory.Actions.Open ||
                action == IssueLinkFactory.Actions.Transition) &&
                issue.Status == IssueStatus.Closed)
            {
                issue.Status = IssueStatus.Open; // <6>
            }
            else if ((action == IssueLinkFactory.Actions.Close ||
                action == IssueLinkFactory.Actions.Transition) &&
                issue.Status == IssueStatus.Open)
            {
                issue.Status = IssueStatus.Closed; // <7>
            }
            else
                isValid = false; // <8>
        }

        if (!isValid)
            return Request.CreateErrorResponse(HttpStatusCode.BadRequest,
                string.Format("Action '{0}' is invalid", action)); // <9>

        await _issueStore.UpdateAsync(issue); // <10>

176 | Chapter 7: Building the API



        return Request.CreateResponse(HttpStatusCode.OK); // <11>
    }

    public bool IsValidAction(string action)
    {
        return (action == IssueLinkFactory.Actions.Close ||
            action == IssueLinkFactory.Actions.Open ||
            action == IssueLinkFactory.Actions.Transition);
    }
}

Here’s how the code works:

• The IssueProcessorController accepts an IIssueStore in its constructor similar
to the IssueController <1>.

• The method is Post and accepts the id and action from the request URI <2>.
• The IsValidAction method is called to check if the action is recognized <3>.
• The FindAsync method is invoked to retrive the issue <4>.
• If the issue is not found, then a 400 Not Found is immediately returned <5>.
• If the action is open or transition and the issue is closed, the issue is opened <6>.
• If the action is close or transition and the issue is open, the issue is closed <7>.
• If neither clause matched, the action is flagged as invalid for the current state <8>.
• If the action is invalid, then an error is returned via CreateErrorResponse. This

method is used because we want an error response that contains a payload <9>.
• We update the issue by calling UpdateAsync <10>, and a 200 OK status is returned
<11>.

This completes coverage of the Issue Tracker API!

Conclusion
This chapter covered a lot of ground. We went from the high-level design of the system
to the detailed requirements of the API and the actual implementation. Along the way,
we learned about many aspects of Web API in practice, as well as how to do integration
testing with in-memory hosting. These concepts are a big part of your journey toward
building evolvable APIs with ASP.NET. Now the fun stuff starts! In the next chapter,
you’ll see how to harden up that API and the tools that are necessary to really allow it
to scale, like caching.
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CHAPTER 8

Improving the API

No pain, no gain. That’s what makes you a champion.

In the previous chapter we discussed the initial implementation of the issue tracker
system. The idea was to have a fully functional implementation that we could use to
discuss the design of the API and the media types to support it. As part of this chapter,
we will try to improve that existing implementation by adding new features like caching,
conflict detection, and security. All the requirements for these new features will be de‐
scribed in terms of BDD as we did with the initial implementation. As we add those new
features, we will dive into the details of the implementation, showing real code, and also
some of the introductory theory behind them. Later chapters will complement that
theory in more detail.

Acceptance Criteria for the New Features
Following are the tests for our API, which cover the new requirements for the tracker
system:

Feature: Output Caching
  Scenario: Retrieving existing issues
    Given existing issues
    When all issues are retrieved
    Then a CacheControl header is returned
    Then a '200 OK' status is returned
    Then all issues are returned

  Scenario: Retrieving an existing issue
    Given an existing issue
    When it is retrieved
    Then a LastModified header is returned
    Then a CacheControl header is returned
    Then a '200 OK' status is returned
    Then it is returned
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Feature: Cache revalidation

  Scenario: Retrieving an existing issue that has not changed
    Given an existing issue
    When it is retrieved with an IfModifiedSince header
    Then a CacheControl header is returned
    Then a '304 NOT MODIFIED' status is returned
    Then it is returned

  Scenario: Retrieving an existing issue that has changed
    Given an existing issue
    When it is retrieved with an IfModifiedSince header
    Then a LastModified header is returned
    Then a CacheControl header is returned
    Then a '200 OK' status is returned
    Then it is returned

Feature: Conflict detection

  Scenario: Updating an issue with no conflicts
    Given an existing issue
    When a PATCH request is made with an IfModifiedSince header
    Then a '200 OK' is returned
    Then the issue should be updated

  Scenario: Updating an issue with conflicts
    Given an existing issue
    When a PATCH request is made with an IfModifiedSince header
    Then a '409 CONFLICT' is returned
    Then the issue is not updated

Feature: Change Auditing

  Scenario: Creating a new issue
    Given a new issue
    When a POST request is made with an Authorization header containing the user
        identifier
    Then a '201 Created' status is returned
    Then the issue should be added with auditing information
    Then the response location header will be set to the resource location

  Scenario: Updating an issue
    Given an existing issue
    When a PATCH request is made with an Authorization header containing the user
        identifier
    Then a '200 OK' is returned
    Then the issue should be updated with auditing information

Feature: Tracing

  Scenario: Creating, Updating, Deleting, or Retrieving an issue
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    Given an existing or new issue
    When a request is made
    When the diagnostics tracing is enabled
    Then the diagnostics tracing information is generated

Implementing the Output Caching Support
Caching is one of the fundamental aspects that makes it possible to scale on the Internet,
as it provides the following benefits when it is implemented correctly:

• Reduces load on the origin servers.
• Decreases network latencies. Clients can get responses much faster.
• Saves network bandwidth. Fewer network hops are required, as the content might

be found in some caching intermediary before the request reaches the origin server.

Implementing caching correctly on a Web API mainly involves two steps:

1. Set the right headers to instruct intermediaries and clients (e.g., proxies, reverse
proxies, local caches, browsers, etc.) to cache the responses.

2. Implement conditional GETs so the intermediaries can revalidate the cached copies
of the data after they become stale.

The first step requires the use of either the Expires or Cache-Control header. The
Expires HTTP header is useful for expressing absolute expiration times. It only tells
caches how long the associated representation is fresh for. Most implementations use
this header to express the last time that the client retrieved the representation or the last
time the document changed on your server. The value for this header has to be expressed
in GTM, not a local time—for example, Expires: Mon, 1 Aug 2013 10:30:50 GMT.
On the other hand, the Cache-Control header provides more granular control for ex‐
pressing sliding expiration dates and also who is allowed to cache the data. The following
list describes well-known values for the Cache-Control header:
no-store

Indicates that caches should not keep a copy of the data under any circumstance.

private

Indicates that the data is intended for a single user, so it should be cached on private
caches like a browser but not on shared caches like proxies.

public

Indicates that the data can be cached anywhere.

no-cache

Forces caches to revalidate the cached copies after they become stale.
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max-age

Indicates a delta in seconds representing the maximum amount of time that a
cached copy will be considered fresh (e.g., max-age[300] means the cached copy
will expire 300 seconds after the request was made).

s-maxage

Is equivalent to max-age but valid for shared caches only.

Adding the Tests for Output Caching
The first thing we need to do is add a new file, OutputCaching, for all our tests related
to output caching. Our first test involves adding output caching support in the operation
for returning all the issues:

Scenario: Retrieving existing issues
    Given existing issues
    When all issues are retrieved
    Then a CacheControl header is returned
    Then a '200 OK' status is returned
    Then all issues are returned

We translate this scenario to a unit test using BDD, as shown in Example 8-1.

Example 8-1. Retrieving all issues with caching headers
public class OutputCaching : IssuesFeature
{
  private Uri _uriIssues = new Uri("http://localhost/issue");

  [Scenario]
  public void RetrievingAllIssues()
  {
    IssuesState issuesState = null;

    "Given existing issues".
      f(() =>
      {
        MockIssueStore.Setup(i => i.FindAsync())
          .Returns(Task.FromResult(FakeIssues))
      });
    "When all issues are retrieved".
      f(() =>
      {
        Request.RequestUri = _uriIssues;
        Response = Client.SendAsync(Request).Result;
        issuesState = Response.Content
          .ReadAsAsync<IssuesState>()
          .Result;
      });
    "Then a CacheControl header is returned".
      f(() =>
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      {
        Response.Headers.CacheControl.Public
          .ShouldBeTrue(); // <1>
        Response.Headers.CacheControl.MaxAge
          .ShouldEqual(TimeSpan.FromMinutes(5)); // <2>
      });
    "Then a '200 OK' status is returned".
      f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.OK));
    "Then they are returned".
      f(() =>
      {
        issuesState.Issues
          .FirstOrDefault(i => i.Id == "1")
          .ShouldNotBeNull();
        issuesState.Issues
          .FirstOrDefault(i => i.Id == "2")
          .ShouldNotBeNull();
      });
  }
}

The unit test is self-explanatory; the part that matters is in lines <1> and <2>, where the
assertions for the CacheControl and MaxAge headers are made. To pass this test, the
response message returned in the Get method of the IssuesController class is modi‐
fied to include those two headers, as shown in Example 8-2.

Example 8-2. The new version of the Get method
public async Task<HttpResponseMessage> Get()
{
  var result = await _store.FindAsync();
  var issuesState = new IssuesState();
  issuesState.Issues = result.Select(i => _stateFactory.Create(i));

  var response = Request.CreateResponse(HttpStatusCode.OK, issuesState);

  response.Headers.CacheControl = new CacheControlHeaderValue();
  response.Headers.CacheControl.Public = true; // <1>
  response.Headers.CacheControl.MaxAge = TimeSpan.FromMinutes(5); // <2>

  return response;
}

The CacheControl header is set to Public <1>, so it can be cached anywhere, and the
MaxAge header is set to a relative expiration of 5 minutes <2>.

The next scenario, shown in Example 8-3, involves adding output caching to the oper‐
ation for retrieving a single issue:

    Scenario: Retrieving an existing issue
    Given an existing issue
    When it is retrieved
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    Then a LastModified header is returned
    Then a CacheControl header is returned
    Then a '200 OK' status is returned
    Then it is returned

Example 8-3. Retrieving a single issue with caching headers
public class OutputCaching : IssuesFeature
{
  private Uri _uriIssue1 = new Uri("http://localhost/issue/1");

  [Scenario]
  public void RetrievingAnIssue()
  {
    IssueState issue = null;

    var fakeIssue = FakeIssues.FirstOrDefault();
    "Given an existing issue".
      f(() => MockIssueStore
        .Setup(i => i.FindAsync("1"))
        .Returns(Task.FromResult(fakeIssue)));
    "When it is retrieved".
      f(() =>
      {
        Request.RequestUri = _uriIssue1;
        Response = Client.SendAsync(Request).Result;
        issue = Response.Content.ReadAsAsync<IssueState>().Result;
      });
    "Then a LastModified header is returned".
      f(() =>
      {
        Response.Content.Headers.LastModified
          .ShouldEqual(new DateTimeOffset(new DateTime(2013, 9, 4))); // <1>
      });
    "Then a CacheControl header is returned".
      f(() =>
      {
        Response.Headers.CacheControl.Public
          .ShouldBeTrue(); // <2>
        Response.Headers.CacheControl.MaxAge
          .ShouldEqual(TimeSpan.FromMinutes(5)); // <3>
      });
    "Then a '200 OK' status is returned".
      f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.OK));
    "Then it is returned".
      f(() => issue.ShouldNotBeNull());
   }
}

The test in Example 8-3 is slightly different from the one we wrote for retrieving all the
issues. In addition to retrieving a single issue, it checks for the LastModified header in
the response <1>. This header will be used later in other scenarios for performing cache
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revalidation. Also, the expected values for the CacheControl <2> and MaxAge <3> head‐
ers are Public and 5 minutes, respectively.

Implementing Cache Revalidation
Once a cached copy of a resource representation becomes stale, a cache intermediary
can revalidate that copy by sending a conditional GET to the origin server. A conditional
GET involves the use of two response headers, If-None-Match and If-Modified-
Since. If-None-Match corresponds to an Etag header, which represents an opaque
value that only the server knows how to re-create. This Etag could represent anything,
but it is typically a hash representing the resource version, which we can generate by
hashing the whole representation content or just some parts of it like a timestamp. On
the other hand, If-Modified-Since corresponds to the Last-Modified header, which
represents a datetime that the server can use to determine whether the resource has
changed since the last time it was served.

Example 8-4 illustrates a pair of request/response messages exchanged by the client/
server with the corresponding caching headers.

Example 8-4. Pair of request and response messages with the caching headers
Response –>

Connection close
Date Thu, 02 Oct 2013 14:46:57 GMT
Expires Sat, 01 Nov 2013 14:46:57 GMT
Last-Modified Mon, 29 Sep 2013 15:40:27 GMT
Etag a9331828c518ac6d97f93b3cfdbcc9bc
Content-Type application/json

Request ->

Host localhost
Accept */*
If-Modified-Since Mon, 29 Sep 2013 15:40:27 GMT
If-None-Match a9331828c518ac6d97f93b3cfdbcc9bc

By using either of these two headers, a caching intermediary can determine whether the
resource representation has changed in the origin server. If the resource has not changed
according to the values in those headers (If-Modified-Since for Last-Modified and
If-None-Match for Etag), the service can return an HTTP status code of 304 Not Modi
fied, which instructs the intermediary to keep the cached version and refresh the ex‐
piration times. Example 8-4 shows both headers, but in practice, the intermediary uses
only one of them.
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Implementing Conditional GETs for Cache Revalidation
Our first test, shown in Example 8-5, will revalidate the cached representation of an
issue that has not changed on the server. You will find these tests in the class CacheVa
lidation.

Scenario: Retrieving an existing issue that has not changed
    Given an existing issue
    When it is retrieved with an IfModifiedSince header
    Then a CacheControl header is returned
    Then a '304 Not Modified' status is returned
    Then it is not returned

Example 8-5. Unit test for validating a cached copy that has not changed
private Uri _uriIssue1 = new Uri("http://localhost/issue/1");

[Scenario]
public void RetrievingNonModifiedIssue()
{
  IssueState issue = null;

  var fakeIssue = FakeIssues.FirstOrDefault();
  "Given an existing issue".
    f(() => MockIssueStore.Setup(i => i.FindAsync("1"))
        .Returns(Task.FromResult(fakeIssue)));
  "When it is retrieved with an IfModifiedSince header".
    f(() =>
    {
      Request.RequestUri = _uriIssue1;
      Request.Headers.IfModifiedSince = fakeIssue.LastModified; // <1>
      Response = Client.SendAsync(Request).Result;
    });
  "Then a CacheControl header is returned".
    f(() =>
    {
      Response.Headers.CacheControl.Public.ShouldBeTrue();
      Response.Headers.CacheControl.MaxAge.ShouldEqual(TimeSpan.FromMinutes(5));
    });
  "Then a '304 NOT MODIFIED' status is returned".
    f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.NotModified)); // <2>
  "Then it is not returned".
    f(() => Assert.Null(issue));
}

Example 8-5 shows the unit test that we created for validating the scenario in which the
resource representation has not changed on the origin server since it was cached. This
test emulates the behavior of a caching intermediary that sends a conditional GET to the
server using the IfModifiedSince header that was previously stored <1>. As part of the
expectations of the test, the status code in the response should be 304 NOT MODIFIED <2>.
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The Get method in the IssuesController class has to be modified to include all the
conditional GET logic (see Example 8-6). If a request message with an IfModified
Since header is received, that date must be compared with the LastModified field in
the requested issue to check whether the issue has changed since the last time it was
served to the caching intermediary.

Example 8-6. The new version of the Get method that supports conditional GETs
public async Task<HttpResponseMessage> Get(string id)
{
  var result = await _store.FindAsync(id);
  if (result == null)
    return Request.CreateResponse(HttpStatusCode.NotFound);

  HttpResponseMessage response = null;

  if( Request.Headers.IfModifiedSince.HasValue &&
      Request.Headers.IfModifiedSince == result.LastModified) // <1>
  {
    response = Request
      .CreateResponse(HttpStatusCode.NotModified); // <2>
  }
  else
  {
    response = Request
      .CreateResponse(HttpStatusCode.OK, _stateFactory.Create(result));
    response.Content.Headers.LastModified = result.LastModified;
  }

  response.Headers.CacheControl = new CacheControlHeaderValue(); // <3>
  response.Headers.CacheControl.Public = true;
  response.Headers.CacheControl.MaxAge = TimeSpan.FromMinutes(5);

  return response;
}

Example 8-6 shows the new code that checks whether the IfModifiedSince header has
been included in the request and is the same as the LastModified field in the retrieved
issue <1>. If that condition is met, a response with the status code 304 Not Modified
is returned <2>. Finally, the caching headers are updated and included as part of the
response as well <3>.

Our next test, shown in Example 8-7, addresses the scenario in which the resource
representation has changed on the origin server since the last time it was cached by the
intermediary:

Scenario: Retrieving an existing issue that has changed
    Given an existing issue
    When it is retrieved with an IfModifiedSince header
    Then a LastModified header is returned
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    Then a CacheControl header is returned
    Then a '200 OK' status is returned
    Then it is returned

Example 8-7. Unit test for validating a cached copy that has changed
private Uri _uriIssue1 = new Uri("http://localhost/issue/1");

[Scenario]
public void RetrievingModifiedIssue()
{
  IssueState issue = null;

  var fakeIssue = FakeIssues.FirstOrDefault();

  "Given an existing issue".
    f(() => MockIssueStore.Setup(i => i.FindAsync("1"))
        .Returns(Task.FromResult(fakeIssue)));
  "When it is retrieved with an IfModifiedSince header".
    f(() =>
  {
    Request.RequestUri = _uriIssue1;
    Request.Headers.IfModifiedSince = fakeIssue.LastModified
        .Subtract(TimeSpan.FromDays(1)); // <1>
    Response = Client.SendAsync(Request).Result;
    issue = Response.Content.ReadAsAsync<IssueState>().Result;
  });
  "Then a LastModified header is returned".
    f(() =>
    {
      Response.Content.Headers.LastModified.ShouldEqual(fakeIssue.LastModified);
    });
  "Then a CacheControl header is returned".
    f(() =>
    {
      Response.Headers.CacheControl.Public.ShouldBeTrue();
      Response.Headers.CacheControl.MaxAge.ShouldEqual(TimeSpan.FromMinutes(5));
    });
  "Then a '200 OK' status is returned".
    f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.OK)); // <2>
  "Then it is returned".
    f(() => issue.ShouldNotBeNull()); // <3>
}

There are some minor changes compared with the previous test that we implemented
for sending a conditional GET. This test changes the value of the IfModifiedSince
header to send a time in the past that differs from one set in the LastModified field for
the issue. In this case, the implementation of the Get method will return a status code
200 OK with a fresh copy of the resource representation <3>.
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Conflict Detection
We have discussed how you can use a conditional GET to revalidate a cached represen‐
tation, and now we’ll cover the equivalent for updates: the conditional PUT or PATCH. A
conditional PUT/PATCH can be used to detect possible conflicts when multiple updates
are performed simultaneously over the same resource. It uses a first-write/first-win
approach for conflict resolution, which means a client can commit an update operation
only if the resource has not changed in the origin server since it was initially served;
otherwise, it may receive a conflict error (HTTP status code 409 Conflict).

It also uses the If-None-Match and If-Modified-Since headers to represent the version
or the timestamp associated with the resource representation that is going to be updated.
The following steps illustrate how this approach works in detail with two clients (X1
and X2) trying to update the same resource R1:

1. Client X1 performs a GET over R1 (version 1). The HTTP response includes the
resource representation and an ETag header with the resource version—V1, in this
case (Last-Modified could also be used).

2. Client X2 performs a GET over the same resource R1 (version 1). It gets the same
representation as client X1.

3. Client X2 performs a PUT/PATCH over R1 to update its representation. This request
includes the modified version of the resource representation and a header If-None-
Match with the current resource version (V1). As a result of this update, the server
returns a response with status code OK and increments the resource version by one
(V2).

4. Client X1 performs a PUT/PATCH over R1. This request message also includes a If-
None-Match header with the resource version V1. The server detects that the re‐
source has changed since it was obtained with version V1, so it returns a response
with status code 409 Conflict.

Implementing Conflict Detection
Our first test, shown in Example 8-8, will update an issue with no conflicts, which means
the value for IfModifiedSince will be the same as the one stored as part of the issue in
the *LastModified() field. You will find these tests in the class ConflictDetection.

Scenario: Updating an issue with no conflicts
    Given an existing issue
    When a PATCH request is made with an IfModifiedSince header
    Then a '200 OK' is returned
    Then the issue should be updated
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Example 8-8. Unit test for updating an issue with no conflicts
private Uri _uriIssue1 = new Uri("http://localhost/issue/1");

[Scenario]
public void UpdatingAnIssueWithNoConflict()
{
  var fakeIssue = FakeIssues.FirstOrDefault();

  "Given an existing issue".
    f(() =>
    {
      MockIssueStore.Setup(i => i.FindAsync("1"))
        .Returns(Task.FromResult(fakeIssue));
      MockIssueStore.Setup(i => i.UpdateAsync("1", It.IsAny<Object>()))
        .Returns(Task.FromResult(""));
    });
  "When a PATCH request is made with IfModifiedSince".
    f(() =>
    {
      var issue = new Issue();
      issue.Title = "Updated title";
      issue.Description = "Updated description";
      Request.Method = new HttpMethod("PATCH");
      Request.RequestUri = _uriIssue1;
      Request.Content = new ObjectContent<Issue>(issue,
         new JsonMediaTypeFormatter());
      Request.Headers.IfModifiedSince = fakeIssue.LastModified; // <1>
      Response = Client.SendAsync(Request).Result;
    });
  "Then a '200 OK' status is returned".
    f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.OK)); // <2>
  "Then the issue should be updated".
    f(() => MockIssueStore.Verify(i => i.UpdateAsync("1",
       It.IsAny<JObject>()))); // <3>
}

Example 8-8 shows the implementation of the first test scenario in which the IfModi
fiedSince header is set to the value of the LastModified property of the issue to be
updated <1>. No conflicts should be detected on the server side, as the values for IfMo
difiedSince and LastModified should match, so a status code of 200 OK is returned
<2>. Finally, the issue is updated in the issues store <3>.

The Patch method in the IssuesController class has to be modified to include all the
conditional update logic, as Example 8-9 demonstrates.

Example 8-9. The new version of the Patch method that supports conditional updates
public async Task<HttpResponseMessage> Patch(string id, JObject issueUpdate)
{
    var issue = await _store.FindAsync(id);
    if (issue == null)
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        return Request.CreateResponse(HttpStatusCode.NotFound);

    if (!Request.Headers.IfModifiedSince.HasValue) // <1>
        return Request.CreateResponse(HttpStatusCode.BadRequest,
                "Missing IfModifiedSince header");

    if (Request.Headers.IfModifiedSince != issue.LastModified) // <2>
       return Request.CreateResponse(HttpStatusCode.Conflict); // <3>

    await _store.UpdateAsync(id, issueUpdate);
    return Request.CreateResponse(HttpStatusCode.OK);

}

Example 8-9 shows the new changes introduced in the Patch method. When the client
does not send an IfModifiedSince header, the implementation simply returns a re‐
sponse with status code 400 Bad Request, as the request is considered to be invalid
<1>. Otherwise, the IfModifiedSince header received in the request message is com‐
pared with the LastModified field of the issue to be updated <2>. If they don’t match,
a response with status code 409 Conflict is returned <3>. In any other case, the issue
is finally updated and a response with status code 200 OK is returned.

The next test, shown in Example 8-10, addresses the scenario in which a conflict is
detected:

Scenario: Updating an issue with conflicts
    Given an existing issue
    When a PATCH request is made with an IfModifiedSince header
    Then a '409 CONFLICT' is returned
    Then the issue is not updated

Example 8-10. Unit test for updating an issue with conflicts
[Scenario]
public void UpdatingAnIssueWithConflicts()
{
  var fakeIssue = FakeIssues.FirstOrDefault();

  "Given an existing issue".
    f(() =>
    {
      MockIssueStore.Setup(i => i.FindAsync("1"))
        .Returns(Task.FromResult(fakeIssue));
    });
  "When a PATCH request is made with IfModifiedSince".
    f(() =>
    {
      var issue = new Issue();
      issue.Title = "Updated title";
      issue.Description = "Updated description";
      Request.Method = new HttpMethod("PATCH");
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      Request.RequestUri = _uriIssue1;
      Request.Content = new ObjectContent<Issue>(issue,
        new JsonMediaTypeFormatter());
      Request.Headers.IfModifiedSince = fakeIssue.LastModified.AddDays(1); // <1>
      Response = Client.SendAsync(Request).Result;
    });
  "Then a '409 CONFLICT' status is returned".
    f(() => Response.StatusCode
      .ShouldEqual(HttpStatusCode.Conflict)); // <2>
  "Then the issue should be not updated".
    f(() => MockIssueStore.Verify(i =>
      i.UpdateAsync("1", It.IsAny<JObject>()), Times.Never())); // <3>
}

Example 8-10 shows the implementation of the scenario in which a conflict is detected.
We sent the IfModifiedSince header into the future by adding one day to the value of
LastModified property in the issue that is going to be updated <1>. Since the values for
IfModifiedSince and LastModified are different, the server will return a response with
status code 409 Conflict, which is what the test expects <2>. Finally, the test also verifies
that the issue was not updated in the issue store <3>.

Change Auditing
Another feature that Web API will support is the ability to identify the user or client
who created a new issue or updated an existing one. That means the implementation
has to authenticate the client using a predefined authentication scheme based on ap‐
plication keys, username/password, HMAC (hash-based message authentication code),
or security tokens such as OAuth.

Using application keys is probably the simplest scenario. Every client application is
identified with a simple and fixed application key. This authentication mechanism is
perhaps a bit weak, but the data that the service has to offer is not sensitive at all. The
data is available for everyone with a key, and it’s pretty much used for public services
such as Google Maps or a search for public pictures (in Instagram, for example). The
only purpose of the key is to identify clients and apply different service-level agreements
such as API quotas or availability. Anyone can impersonate the client application by
knowing the application key.

HMAC is similar to the application key authentication mechanism, but uses cryptog‐
raphy with a secret key to avoid the impersonation issues found in the first scheme. As
opposed to basic authentication, the secret key or password is not sent on every message
in plain text. A hash or HMAC is generated from some parts of the HTTP request
message via the secret key, and that HMAC is included as part of the authorization
header. The server can authenticate the client by validating the attached HMAC in the
authorization header. This model fits well with cloud computing, where a vendor such
as AWS (Amazon Web Services) or Windows Azure uses a key for identifying the tenant
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and provides the right services and private data. No matter which client application is
used to consume the services and data, the main purpose of the key is to identify the
tenant. Although there are several existing implementations of HMAC authentication,
we will cover one called Hawk, which represents an emergent specification to stand‐
ardize HMAC authentication.

The last scheme is based on security tokens, and it is probably the most complicated
one. Here you can find OAuth, which was designed with the idea of delegating author‐
ization in Web 2.0. The service that owns the data can use OAuth to share that data with
other services or applications without compromising the owner credentials.

All these schemes will be discussed more in detail in Chapter 15. As part of this chapter,
Hawk will be used to authenticate the client application before setting the auditing in‐
formation on the issue.

Implementing Change Auditing with Hawk
Authentication
The first test will create a new issue with auditing information about who created the
issue. Therefore, this test will also have to authenticate the client first using HMAC
authentication with Hawk. You will find the code for these tests in the CodeAuditing
class.

Scenario: Creating a new issue
    Given a new issue
    When a POST request is made with an Authorization header containing the user
        identifier
    Then a '201 Created' status is returned
    Then the issue should be added with auditing information
    Then the response location header will be set to the resource location

To add Hawk authentication as part of the implementation, we’ll use an existing open
source implementation called HawkNet, which is available on GitHub. This implemen‐
tation provides integration with multiple Web API frameworks in .NET, including
ASP.NET Web API. It accomplishes the integration with ASP.NET Web API through
HTTP message handlers, as you can see in Example 8-11. One handler is used on the
client side to automatically add the Hawk authorization header in every ongoing call,
and another handler on the server side validates that header and authenticates the client.

Example 8-11. Injecting the HawkClientMessageHandler in the HttpClient instance
Credentials = new HawkCredential
{
    Id = "TestClient",
    Algorithm = "hmacsha256",
    Key = "werxhqb98rpaxn39848xrunpaw3489ruxnpa98w4rxn",
    User = "test"
}; // <1>
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var server = new HttpServer(GetConfiguration());
Client = new HttpClient(new HawkClientMessageHandler(server, Credentials)); // <2>

Example 8-11 shows how the HawkClientMessageHandler is injected into the
HttpClient instance used by the tests. HawkCredential is the class used by HawkNet
to configure different settings that specify how the Hawk header will be generated. The
test configures this class to use SHA-256 as the algorithm for issuing the HMAC, the
private key, the application id (TestClient), and the user associated with that key
(test) <1>. Once the HawkCredential class is instantiated and configured, it is passed
to the HawkClientMessageHandler injected in the HttpClient instance <2>.

In addition, the server also has to be configured with the message handler counterpart
to validate the header and authenticate the client. HawkNet provides a HawkMessage
Handler class for that purpose, which can be injected as part of the route configuration
or as a global handler (see Example 8-12).

Example 8-12. Injecting the HawkMessageHandler in the route configuration
Credentials = new HawkCredential
{
    Id = "TestClient",
    Algorithm = "hmacsha256",
    Key = "werxhqb98rpaxn39848xrunpaw3489ruxnpa98w4rxn",
    User = "test"
};

var config = new HttpConfiguration();

var serverHandler = new HawkMessageHandler(new HttpControllerDispatcher(config),
(id) => Credentials);

config.Routes.MapHttpRoute("DefaultApi", "{controller}/{id}", new { id =
RouteParameter.Optional }, null, serverHandler);

Once the handlers for sending and authenticating the Hawk header are in place, we can
finally start working on the tests for our first scenario about creating issues.
Example 8-13 shows the final implementation of this test.

Example 8-13. Creating a new issue implementation
[Scenario]
public void CreatingANewIssue()
{
  Issue issue = null;

  "Given a new issue".
    f(() =>
    {
      issue = new Issue
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      {
        Description = "A new issue",
        Title = "A new issue"
      };

      var newIssue = new Issue { Id = "1" };

      MockIssueStore
        .Setup(i => i.CreateAsync(issue, "test"))
        .Returns(Task.FromResult(newIssue));
    });
  "When a POST request is made with an Authorization header containing the user
  identifier".
    f(() =>
    {
        Request.Method = HttpMethod.Post;
        Request.RequestUri = _issues;
        Request.Content = new ObjectContent<Issue>(issue,
          new JsonMediaTypeFormatter());
        Response = Client.SendAsync(Request).Result;
    });
  "Then a '201 Created' status is returned".
    f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.Created));
  "Then the issue should be added with auditing information".
    f(() => MockIssueStore.Verify(i => i.CreateAsync(issue, "test"))); // <1>
  "Then the response location header will be set to the resource location".
    f(() => Response.Headers.Location.AbsoluteUri.ShouldEqual
        ("http://localhost/issue/1"));
}

The test mainly verifies that the issue is correctly persisted in the issue store along with
the authenticated user test <1>. The CreateAsync method in the IIssueStore interface
is modified to receive an additional argument representing the user who created the
user. It is now the responsibility of the Post method in the IssueController class to
pass that value inferred from the authenticated user (see Example 8-14).

Example 8-14. Updated version of the Post method
[Authorize]
public async Task<HttpResponseMessage> Post(Issue issue)
{
    var newIssue = await _store.CreateAsync(issue, User.Identity.Name); // <1>
    var response = Request.CreateResponse(HttpStatusCode.Created);
    response.Headers.Location = _linkFactory.Self(newIssue.Id).Href;
    return response;
}

The authenticated user becomes available in the User.Identity property, which was
set by the HawkMessageHandler after the received Authorization header was validated.
This user is passed to the CreateAsync method right after the received issue <1>. Also,
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the Post method has been decorated with the Authorize attribute to reject any anony‐
mous call.

Scenario: Updating an issue
    Given an existing issue
    When a PATCH request is made with an Authorization header containing the
    user identifier
    Then a '200 OK' is returned
    Then the issue should be updated with auditing information

The implementation of the test for verifying this scenario also needs to check if changes
are persisted in the IIssueStore along with the authenticated user, as shown in
Example 8-15.

Example 8-15. Updating issue implementation
[Scenario]
public void UpdatingAnIssue()
{
  var fakeIssue = FakeIssues.FirstOrDefault();

  "Given an existing issue".
    f(() =>
    {
      MockIssueStore
        .Setup(i => i.FindAsync("1"))
        .Returns(Task.FromResult(fakeIssue));
      MockIssueStore
        .Setup(i => i.UpdateAsync("1", It.IsAny<Object>(), It.IsAny<string>()))
        .Returns(Task.FromResult(""));
    });
  "When a PATCH request is made with an Authorization header containing the user
  identifier".
    f(() =>
    {
      var issue = new Issue();
      issue.Title = "Updated title";
      issue.Description = "Updated description";
      Request.Method = new HttpMethod("PATCH");
      Request.Headers.IfModifiedSince = fakeIssue.LastModified;
      Request.RequestUri = _uriIssue1;
      Request.Content = new ObjectContent<Issue>(issue, new JsonMediaTypeFormatter());
      Response = Client.SendAsync(Request).Result;
    });
  "Then a '200 OK' status is returned".
    f(() => Response.StatusCode.ShouldEqual(HttpStatusCode.OK));
  "Then the issue should be updated with auditing information".
    f(() => MockIssueStore.Verify(i => i.UpdateAsync("1", It.IsAny<JObject>(),
        "test"))); // <1>
}
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The UpdateAsync method in the IIssueStore interface was also modified to receive an
additional argument representing the user who created the user <1>.

Example 8-16 shows the modified version of the Patch method. The UpdateAsync call
to the configured IIssueStore has been modified to pass the additional argument with
the authenticated user.

Example 8-16. Updated version of the Patch method
[Authorize]
public async Task<HttpResponseMessage> Patch(string id, JObject issueUpdate)
{
  var issue = await _store.FindAsync(id);
  if (issue == null)
      return Request.CreateResponse(HttpStatusCode.NotFound);

  if (!Request.Headers.IfModifiedSince.HasValue)
      return Request.CreateResponse(HttpStatusCode.BadRequest,
          "Missing IfModifiedSince header");

  if (Request.Headers.IfModifiedSince != issue.LastModified)
     return Request.CreateResponse(HttpStatusCode.Conflict);

  await _store.UpdateAsync(id, issueUpdate, User.Identity.Name); // <1>
  return Request.CreateResponse(HttpStatusCode.OK);
}

Tracing
Tracing is an irreplaceable feature for troubleshooting or debugging a Web API in en‐
vironments where a developer IDE or code debugging tool is not available, or in early
stages of development when the API is not yet stabilized and some random, hard-to-
identify issues occur. ASP.NET Web API ships with a tracing infrastructure out of the
box that you can use to trace any activity performed by the framework itself or any
custom code that is part of the Web API implementation.

The core component or service in this infrastructure is represented by the interface
System.Web.Http.Tracing.ITraceWriter, which contains a single method, Trace, to
generate a new trace entry.

Example 8-17. ITraceWriter interface definition
public interface ITraceWriter
{
  void Trace(HttpRequestMessage request, string category, TraceLevel level,
  Action<TraceRecord> traceAction);
}

The Trace method expects the following arguments:
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request

Request message instance associated to the trace.

category

The category associated with the trace entry. This might become handy to group
or filter the traces.

level

Detail level associated with the entry. This is also useful to filter the entries.

traceAction

A delegate to a method where the trace entry is generated.

Although this infrastructure is not tied to any existing logging framework in .NET—
such as Log4Net, NLog, or Enterprise Library Logging—a default implementation has
been provided. It is called System.Web.Http.Tracing.SystemDiagnosticsTraceWrit
er, and it uses System.Diagnostics.Trace.TraceSource. For the other frameworks,
an implementation of the service interface ITraceWriter must be provided.

Example 8-18 illustrates how a custom implementation can be injected in the Web API
configuration object.

Example 8-18. ITraceWriter configuration
HttpConfiguration config = new HttpConfiguration();
config.Services.Replace(typeof(ITraceWriter), new SystemDiagnosticsTraceWriter());

Implementing Tracing
There is a single scenario or test that covers tracing in general for all the methods in the
IssueController class. That test can be found in the Tracing class.

Scenario: Creating, Updating, Deleting, or Retrieving an issue
    Given an existing or new issue
    When a request is made
    When the diagnostics tracing is enabled
    Then the diagnostics tracing information is generated

The first thing we’ll do before writing the test for this scenario is to configure an instance
of ITraceWriter to check that tracing is actually working. See Example 8-19.

Example 8-19. ITraceWriter configuration for the tests
public abstract class IssuesFeature
{
  public Mock<ITraceWriter> MockTracer;

  public IssuesFeature()
  {
  }
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  private HttpConfiguration GetConfiguration()
  {
    var config = new HttpConfiguration();

    MockTracer = new Mock<ITraceWriter>(MockBehavior.Loose);

    config.Services.Replace(typeof(ITraceWriter), MockTracer.Object); // <1>

    return config;
  }
}

Example 8-19 shows how a mock instance is injected in the HttpConfiguration in‐
stance used by Web API <1>. The test will use this mock instance (shown in
Example 8-20) to verify the calls to the Trace method from the controller methods.

Example 8-20. Tracing test implementation
public class Tracing : IssuesFeature
{
  private Uri _uriIssue1 = new Uri("http://localhost/issue/1");

  [Scenario]
  public void RetrievingAnIssue()
  {
    IssueState issue = null;
    var fakeIssue = FakeIssues.FirstOrDefault();

    "Given an existing or new issue".
      f(() =>
      {
        MockIssueStore
          .Setup(i => i.FindAsync("1"))
          .Returns(Task.FromResult(fakeIssue)));
      }
    "When a request is made".
      f(() =>
      {
        Request.RequestUri = _uriIssue1;

        Response = Client
          .SendAsync(Request)
          .Result;

        issue = Response.Content
          .ReadAsAsync<IssueState>()
          .Result;
      });
    "When the diagnostics tracing is enabled".
      f(() =>
      {
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        Configuration.Services
          .GetService(typeof(ITraceWriter)).ShouldNotBeNull(); // <1>
      });
    "Then the diagnostics tracing information is generated".
      f(() =>
      {
        MockTracer.Verify(m => m.Trace(It.IsAny<HttpRequestMessage>(), // <2>
          typeof(IssueController).FullName,
          TraceLevel.Debug,
          It.IsAny<Action<TraceRecord>>()));
      });
  }
}

The test implementation in Example 8-20 verifies that the ITraceWriter service is cur‐
rently configured in the HttpConfiguration instance, and also checks that the Issue
Controller class (shown in Example 8-21) is sending tracing messages to the config‐
ured mock instance.

Example 8-21. Tracing in the IssueController
public async Task<HttpResponseMessage> Get(string id)
{
    var tracer = this.Configuration.Services.GetTraceWriter(); // <1>

    var result = await _store.FindAsync(id);
    if (result == null)
    {
        tracer.Trace(Request,
            TraceCategory, TraceLevel.Debug,
               "Issue with id {0} not found", id); // <2>

        return Request.CreateResponse(HttpStatusCode.NotFound);
    }

    .....
}

The HttpConfiguration class provides an extension method or shortcut to obtain an
instance of the configured ITraceWriter so it can be used by custom code in the im‐
plementation. Example 8-21 shows how the IssueController class has been modified
to get a reference to the ITraceWriter <1>, which is used to trace information about an
issue not found <2> before the response is returned.
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Conclusion
This chapter covered several important aspects of improving an existing Web API, such
as caching, conflict management, auditing, and tracing. Although they might not apply
in certain scenarios, it is always useful to know which benefits they bring to the table so
you can use them correctly.
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CHAPTER 9

Building the Client

It takes two to tango.

Throughout this book we have had a stated goal of building a system that can evolve.
Most of our attention so far has been around building an API that enables clients to
remain loosely coupled so as to achieve this goal. Unfortunately, the server API can only
enable loose coupling; it cannot prevent tight coupling. No matter how much we employ
hypermedia, standard media types, and self-descriptive messages, we cannot prevent
clients from hardcoding URIs or assuming they know the content type and semantics
of a response.

Part of the role of exposing a Web API is to provide guidance to consumers on how to
use the service in a way that takes advantage of the Web’s architecture. We need to show
client developers how they can consume the API without taking hard dependencies on
artifacts that may change.

Guidance to client developers can take the form of documentation, but usually that is
only a partial solution. API providers want to make the experience of consuming their
API as painless as possible and therefore frequently provide client libraries that attempt
to get client developers up and running quickly. Sadly, there is a popular attitude toward
software libraries where if it isn’t obvious how to use something in five minutes, it must
be poorly written. Unfortunately, this optimization toward ease of use misses the subtle
difference between simple and easy.

In the process of making APIs easy to use, API providers frequently create client libraries
that encapsulate the HTTP-based API, and in the process lose many benefits of web
architecture and end up tightly coupling client applications to the client library, which
is in turn tightly coupled to the server API. In this chapter, we will discuss more about
the negative effects of this type of client library. Then, we will show an alternative ap‐
proach that is just as easy to use as a wrapper API but does not suffer the same issues.
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Following that, we will discuss techniques for structuring client logic and managing
client state that will lead to clients that are adaptive and resilient to change.

Client Libraries
The purpose of a client library is to raise the level of abstraction so that client application
developers can write code in terms that are relevant to the application domain. By en‐
abling reuse of boilerplate code that is used for creating HTTP requests and parsing
responses, developers can focus on getting their job done.

Wrapper Libraries
There are countless examples of API wrapper libraries. Searching a site like Program‐
mable Web will lead to many sites where client libraries are offered in dozens of different
programming languages. In some cases, these client libraries are from the API providers
themselves; however, these days, many libraries are community contributions. API
providers have discovered it is a huge amount of work trying to keep all the different
versions of these libraries up to date.

Generally, a client API wrapper will look something like this, regardless of the specific
provider:

var api = new IssueTrackingApi(apiToken);
var issue = api.GetIssue(issueId);
issue.Description = "Here is a description for my issue";
issue.Save();

One of the most fundamental problems with the preceding example is that the client
developer no longer knows which of those four lines of code make a network request
and which ones don’t. There is no problem abstracting away the boilerplate code that
is required to make a network request, but by completely hiding when those high-latency
interactions occur, it can be very difficult for client application developers to write
network-efficient applications.

Reliability
One of the challenges of network-based programming is that the network is not reliable.
This is especially true in the world of wireless and cellular communication. HTTP as
an application protocol has a number of features that enable an application to tolerate
such an unreliable medium. Calling a method like GetIssue or Save provides two po‐
tential outcomes: success and the expected return type, or an exception. HTTP identifies
requests as safe or unsafe, idempotent or nonidempotent. With this knowledge, a client
application can interpret the standardized status codes and decide what remedial action
to take upon a failure. There are no such conventions in the object-oriented and pro‐
cedural world. I can make a guess that GetIssue is safe, and Save is unsafe and—in this
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particular code sample—idempotent. However, that is possible only because I am in‐
terpreting the method names and guessing at the underlying client behavior. By hiding
the HTTP requests behind a procedural call, I am hiding the reliability features of HTTP
and forcing the client developer to reinvent her own conventions and standards to regain
that capability.

It is possible that certain reliability mechanisms, like retry, could be built into the client
library, and some of the better-written libraries likely do that. However, the developers
writing the library do not know the reliability requirements of the client application. A
corrective action that is a good idea for one client application may be a terrible idea for
another. A batch application that crawls data sources overnight may be happy to retry
a request two or three times, waiting a few minutes between each request, but one with
a human being waiting for a response is not likely to be so patient.

Handling temoprary service interruptions is not the only way that the outcome of HTTP
requests can differ. The requested resource may be Gone (410), it may have been moved
See Other (303), you may be Forbidden (403) to retrieve it, or you may have to wait
for the representation to be created (202). The Content-Type of the response may have
changed since the last time this resource was requested. All of these results are not a
failure to execute the request. They are valid responses when requesting information
from a system that we expect to evolve over time. A client needs to be built to handle
any and all of these situations if it is to be reliable for many years.

I regularly see API documentation that describes what response codes may be returned
from a particular API resource. Unfortunately, there is no way to constrain what re‐
sponse codes will be returned from an API. In every HTTP request there are many
intermediaries that participate in the request: client-connectors, proxies, caches, load-
balancers, reverse-proxies, and application middleware, to name a few. All of these could
short-circuit a request and return some other status code. Clients need to be built to
handle all of the response codes for all resources. Building a client that assumes a re‐
source will never return a 303 is introducing hidden coupling just as if you had hard‐
coded the URI.

Response types

A method such as GetIssue makes an assumption that the response returned can be
translated into an Issue object. With some basic content negotiation code in a client
library, you can build in resilience to deal with the eventuality of JSON falling out of
favor for some other wire format (just as XML is currently falling out of favor). However,
there are some nice things that can be done with HTTP that are prohibited by such a
tightly constrained contract. Consider this request:

GET /IssueSearch?priority=high&AssignedTo=Dave

In a procedural wrapper library, the signature would be something like:
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public List<Issue> SearchIssues(int priority, string assignedTo);

The media type of the returned resource could be something like Collection+Json,
which is ideally suited for returning lists of things. However, what happens if the server
finds that there is only one issue that matches the filter criteria? A server may decide
that instead of returning a Collection+JSON list of one Issue, it would prefer to return
an entire application/Issue+Json representation. A procedural library cannot sup‐
port this flexibility without resorting to returning type object, which somewhat defeats
the purpose of the strongly typed wrapper library. There are many reasons why an API
developer may not want to introduce this type of variance in responses, but there are
certain circumstances where it can be invaluable. Consider the expense report with a
list of items and the associated expense receipt. That receipt may be in the form of a
PDF, a TIFF, a bitmap, an HTML page, or an email message. There is no way to strongly
type the representation in a single method signature.

Lifetime

In our tiny client snippet, we instantiated an Issue object. That object was populated
with state from a representation returned from the server. The representation returned
from the server quite possibly had a cache control header associated with it. If that cache
controller header looked like the following, then the server is making a statement that
the data should be considered fresh for at least the next 60 seconds:

Cache-Control: private;max-age=60

Assuming the appropriate caching infrastructure, any attempt to request that Issue
again within 60 seconds would not actually make a network roundtrip but would return
the representation from the cache. Beyond 60 seconds, any attempt to retrieve that issue
information would cause a network request and up-to-date information would be re‐
trieved. By copying the representation data into a local object and discarding the re‐
turned representation, you tie the lifetime of that data to the lifetime of the object. The
max-age of 60 seconds has been lost. That data will be held and reused until the object
is thrown away and a new one retrieved, regardless of how stale the information is.
Enabling the server to control data lifetime is very important when you are dealing with
issues of concurrency. The server is the owner of the data and the one that is most capable
of understanding the data’s volatility. Relying on clients to dictate caching rules requires
them to know more than they really need to know about the server’s data.

The problem of object instances containing stale data gets far worse when client libraries
build object graphs. Frequently, in wrapping APIs you will see one object being used to
retrieve representations to populate other related objects. Often you do this using
property-based lazy loading:

  var issue = api.GetIssue(issueId);
  var reportedByuser = issue.ReportedBy;
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Using this type of navigation to load properties is very common in object-relational
mapping (ORM) libraries when you are retrieving information from a database. Un‐
fortunately, by doing this in an API wrapper library, you end up tying the lifetime of
the User object to the lifetime of the Issue object. This means you are not only ignoring
the HTTP caching lifetime directives but are also creating lifetime interdependencies
between representation data. The natural result of this pattern is also often directly the
opposite of what we want. It is likely that an issue resource will change more frequently
than a user resource, and it is likely that a user resource may be reused by multiple issue
resources. However, our object graph ties the lifetime of the User to the Issue, which
is suboptimal. ORM libraries often address this by creating a new lifetime scope called
a session or unit of work, and object lifetimes are managed by those containers. This
creates additional complexity for the client that is unnecessary if we can take advantage
of the caching directives provided by the server using the HTTP protocol. To do that,
we need to stop hiding the HTTP behind a wrapper.

Everyone has his or her own style
Another way that client wrapper libraries can make API usage confusing is by main‐
taining their own pieces of protocol state. Through a sequence of interations with the
client library, future interactions are modified based on stored state. This may be au‐
thentication information or other preferences that modify requests. When different
APIs each implement their own client libraries and invent their own interaction models,
it increases the developer learning curve. It becomes additionally annoying when a client
library must work with multiple APIs to achieve its goal. Working with multiple client
libraries that behave differently to access remote interfaces that conform to the standard
uniform interface of HTTP is maddening.

Unfortunately, many of these libraries are an all-or-nothing proposition. Either you do
raw HTTP, or you use the API for everything. Usually there is no way to access the HTTP
request that is sent by the wrapper library to make minor modifications to the request.
The same goes for the response: if the client library doesn’t know about some part of
the response, then there is no way to get at the information. This usually means that a
minor change to the server-side API either forces you to move to a new version of the
client library, or at best prevents you from taking advantage of new API features until
you upgrade.

Hypermedia hostile
Hypermedia-driven APIs are dynamic in the resources that they expose. This type of
API is particularly difficult to create API wrappers for. There is no way to define a class
that sometimes has methods and other times does not. I believe one of the reasons that
we have seen very little adoption of hypermedia-driven APIs is due to the fact that few
people have found convenient ways to consume hypermedia APIs on the client.
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The real difference with a hypermedia API is that the distributed function that is exposed
by the API is delivered to the client as a piece of data. It is represented as a link embedded
in the returned representation. The idea of manipulating functions as data is not new,
but in this case we are considering a link as a piece of data that represents a remote call.

The next section will discuss an alternative approach to building client libraries where
we promote a link to a first-class concept that can be used to make remote calls to an
API. This approach is more compatible with hypermedia-driven APIs but also can be
used very effectively to access APIs that have not adopted all of the REST constraints.

Links as Functions
The most important part of a link is the URL. However, the URL itself is simply an
identifier to be interpreted by the server. The significance of the identifier is provided
by the link relation type. Without understanding the purpose of a link, a client appli‐
cation will find it very difficult to do anything useful with that link.

Consider again the stylesheet link relation. The link relation specification simply says
“Refers to a stylesheet.” However, web browsers have explicit logic that knows to auto‐
matically dereference these types of links using a GET method, and use the returned
representation to make visual changes to the context document. Clients can associate
any arbitrary logic of their choosing to particular link relation types.

The vast majority of link relations have nothing to say about how a client might process
a response. However, there are some relations that declare some kind of supported
protocol related to how the link might be activated. Examples include search, oauth2-
token, and oauth2-authorize.

By implementing a link as a class, we can incorporate the behavior necessary to create
an appropriate HTTP request and in some scenarios process the response to the request:

        var tokenLink = new OAuth2TokenLink
    {
        Target = new Uri("https://login.live.com/oauth20_token.srf"),
        RedirectUri = new Uri("https://login.live.com/oauth20_desktop.srf"),
        ClientId = "000000007C0B306F",
        ClientSecret = "LsKOqUbIv5HSPHt2OM9Z4Ay219Mf-DNA",
        GrantType = "authorization_code",
        AuthorizationCode = "3eab54b1-86fa-4596-ce5e-91cb4e55bbd3"
    };

    var client = new HttpClient();
    var response = await client.SendAsync(tokenLink.CreateRequest());
    var body = await response.Content.ReadAsStringAsync();

    if (response.IsSuccessStatusCode)
    {
        var token = OAuth2TokenLink.ParseTokenBody(body);
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    }
    else
    {
        var error = OAuth2TokenLink.ParseErrorBody(body);
    }

In this example, OAuth2TokenLink represents a link to an OAuth token generation re‐
source. The link exposes all the parameters that will be needed to make the request.
These parameters can be exposed in whatever types are most natural in .NET. The details
of converting those into the required format for the HTTP request are abstracted away.

By calling CreateRequest, the OAuthTokenLink class creates an instance of HttpRe
questMessage with the method POST and the Content property contains an instance of
FormEncodedUrlContent with all the necessary parameters. The HttpRequestMes
sage object can then be used just like any other request. This allows the reuse of a
standard HttpClient with all the usual DefaultRequestHeaders and MessageHandlers.

Once an HttpResponseMessage has been retrieved, we can use the OAuthTokenLink to
parse the response body. By taking this approach, we encapsulate all of the semantics of
the link in the link class without the library class having to deal with the mechanics of
making the request.

Service antipattern
It is common for developers creating client wrapper libraries to define a service class
that exposes a set of methods that correspond to remote resources. For example, if we
were creating a wrapper library for our Issue API, it might look like:

public class IssueApi {

        public Issue GetIssue(int id) {...}
        public Issue CreateIssue(IssueDto issueInfo) {...}
        public List<Issue> GetOpenIssues() {...}
        public List<Issue> GetMyIssues(int userId) {...}

}

var issueApi = new IssueApi("http://example.org/issueApi");
var issue = issueApi.GetIssue(77);

List<Issues> openIssues = issueApi.GetOpenIssues();

One of the problems of this approach is that the entire API is now defined by the Service
API class. The available resources, the return types, and the parameters are all fixed by
a client-side library.

We can implement the same capability using an IssueLink and an IssuesLink. There
are even more generic ways of accessing these resources, but for the sake of simplicity,
let us consider these two classes.
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To access an issue and lists of issues, we can do the following:

var httpClient = new HttpClient();

var issueLink = new IssueLink() {
        Target = new Uri("http://example.org/issueApi/Issue/{id}"),
        Id = 77
}

var issue = issueLink.ParseResponse(
            await httpClient.SendAsync(issueLink.CreateRequest()));

var issuesLink = new IssuesLink() {
        Target = new Uri("http://example.org/issueApi/OpenIssues")
}

List<Issues> issues = issuesLink.ParseResponse(
            await httpClient.SendAsync(issueLink.CreateRequest()));

By ensuring that our API coupling is limited to link types and not to specific resources,
we can be confident that our IssuesLink will work when the API adds more resources
(e.g., /ClosedIssues, /CriticalIssues, and /LateIssues):

var httpClient = new HttpClient();

var closedIssuesLink = new IssuesLink {
        Target = new Uri("http://acme.org/issueApi/ClosedIssues"),

};

List<Issues> closedIssues = issuesLink.ParseResponse(
            httpClient.SendAsync(closedIssuesLink.CreateRequest()));

var criticalIssuesLink = new IssuesLink {
        Target = new Uri("http://acme.org/issueApi/CriticalIssues"),

};

List<Issues> criticalIssues = issuesLink.ParseResponse(
            httpClient.SendAsync(criticalIssuesLink.CreateRequest()));

var lateIssuesLink = new IssuesLink {
        Target = new Uri("http://acme.org/issueApi/LateIssues"),

};

List<Issues> lateIssues = issuesLink.ParseResponse(
            httpClient.SendAsync(lateIssuesLink.CreateRequest()));

The semantics of each of these requests is identical. It is a GET request that returns a
media type that contains a list of issues. The fact that each link returns different subsets
of issues has no impact on the semantics of the link. In a wrapper API, it would be

210 | Chapter 9: Building the Client



necessary to create new methods on the client library to expose these resources. Con‐
sumers of the API must wait for the release of a new client library and must update their
client code before they can access these new resources.

To work around the inability to easily expose new resources to clients, people often
attempt to build sophisticated query capabilities into their API. The problem with this
approach, beyond the coupling on the query syntax, is that just a few query parameters
can open up a huge number of potential resources, some of which may be expensive to
generate. Numerous API providers are starting to discover the challenging economics
of exposing arbitrary query capabilities to third parties. A much more managable ap‐
proach is to enable a few highly optimized resources that address the majority of use
cases. It is critical, however, that new resources can be added quickly to the API to
address new requirements.

Deserializing links
Once you embrace the notion of embedding links into representations, deserializing
representations has the added benefit of automatically generating link instances. All that
is required is to retreive those links from the representation object model.

When you are consuming links with relations that are not specific to a particular media
type, it is necessary for the representation deserialization code to use some form of link
factory in order to create links of the correct type. You can use the link relation value as
a lookup value into a dictionary of types to determine the correct type to instantiate.

Separating request and response
One of the most significant differences between making a wrapper method call and
using a link to make a request is the separation of the request and response. Using a link
has two distinct steps. First, the request is created and sent to the origin server; then,
optionally, the response is handed over to the link for processing. There are several
benefits to separating these parts. Making an HTTP request is proportionately an ex‐
tremely expensive operation hence all HTTP requests using HttpClient are done asyn‐
chronously. Asynchronous operations, by their very nature, split apart the request and
response code. Recent versions of C# and .NET have made it possible to syntactically
hide this separation, but fundamentally it is still there. Separating the request and re‐
sponse processing of a link is a more natural fit for this type of asynchronous operation.

With a wrapper API, there is an assumption that the HTTP request will be handled
completely within the wrapper method. This implies that every method that accesses a
resource must also handle all the non-2XX responses that can be returned from an API.
The wrapper library must decide what to do with 3XX redirects, 401 Unauthorized
responses, and 503 Server Unavailable responses. When you are interacting with
multiple APIs, there is the possibility that different wrapper APIs may handle these
responses differently, adding even more complexity into the mix.
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With a typed link, you can inspect the response for non-2XX statuses before passing it
on to the typed link for handling. This makes it easier to have consistent, centralized
handling for redirects and error statuses.

var httpClient = new HttpClient();

var issueLink = new IssueLink() {
        Target = new Uri("http://example.org/issueApi/Issue/{id}"),
        Id = 77
}

var response = await httpClient.SendAsync(issueLink.CreateRequest());

if (response.IsSuccessStatusCode) {
   var issue = issueLink.ParseResponse(response);
} else {
        GlobalNonSuccessResponseHandler.Handle(response)
}

The HttpClient class has an extensible handler pipeline that makes adding these cross-
cutting handlers even easier and cleaner. In Chapter 14, we go into more depth on how
you can take advantage of the separated request and response handling to build reactive
clients.

The important point here is that client application developers are no longer tied to
decisions made by the writers of API wrapper libraries when it comes to dealing with
cross-cutting concerns. The API providers can supply strongly typed links that focus
only on delivering code that is specific to their API and leave generic HTTP concerns
to generic HTTP libraries.

Links as bookmarks

One nice side benefit of using links to generate HttpRequestMessage instances is that
they are handy for making repeated requests. An HttpRequestMessage instance can be
used only to make a single HTTP request, whereas a link object can be created and
configured once and be used to make multiple requests. Or a link object can have one
or more parameter values changed and create a new request.

Links can also be stored as part of the client state as a kind of temporary bookmark. One
complaint that I hear often when developers first start looking at hypermedia APIs is
that they are concerned about making multiple requests to traverse from the root of the
API to their desired resource. By bookmarking links, a client can cache links for reuse
so that additional roundtrips will be minimal.

Consider if we were to add a json-home document to the root of our Issue API. It might
look something like this:

{
        "resources": {

212 | Chapter 9: Building the Client



           "http://example.org/rel/issue": {
           "href-template": "/example.org/issueApi/issue/{id}",
                   "href-vars": {
                     "id": "http://example.org/param/issueid"
                   }
           },
       "http://example.org/rel/issues": {
         "href": "/issueApi/issues",
       }

       "http://eample.org/rel/issueprocessor" : {
                        "href-template" : "issues/{id}/issueprocessor",
                        "href-vars": {
                     "id": "http://example.org/param/issueid"
                   }
       }
    }
}

An initial request to the root of the API can retrieve the home document, parse the links,
create link objects, and store them in a globally accessible dictionary. For example:

var httpClient = new HttpClient();

var homeLink = new HomeLink() {
        Target = new Uri("http://example.org/issueApi")
}

var response = await httpClient.GetAsync(homeLink.CreateRequest());

var homedoc = homeLink.ParseHomeDocument(response, LinkFactory);

GlobalLinks = homeDoc.GetResourcesAsDictionary();

var issueLink = GlobalLinks["http://example.org/rel/issue"];
...

In this simplified example, we are using a single root document to populate a Global
Links dictionary with all the discovered links. This code would be run just once on
startup of a client application, and the overhead of supporting hypermedia becomes just
one extra roundtrip per execution of the client application.

Having all the links of the application stored as a single root document is not a best
practice of hypermedia APIs because you lose the benefits of being able to make links
available only when the context is appropriate. However, in every API there will be some
links that can be exposed at the root. Other links can be discovered at other resources
in the system, and some of those will be bookmarkable.
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There is no single prescriptive solution for every Web API. Some techniques will work
in some scenarios, but not necessarily all. Our goal here is to explore what techniques
may be possible to address challenges introduced by seeking evolvability.

Regardless of the disadvantages of creating a single root discovery document and cach‐
ing all the links globally, it is a far more evolvable approach than hardcoding URIs into
a client library and requires minimal effort to achieve.

Application Workflow
Using links to encapsulate interaction semantics and provide a layer of indirection al‐
lows the server to evolve its own URI space. These are significant steps toward the goal
of decoupling distributed components.

However, clients and servers can still become coupled by the protocol of interactions
across multiple resources. If a client has encoded logic that says it should retrieve re‐
source A, retrieve resource B, present that information, capture some input, and then
send the result to resource C, you cannot change this workflow without changing the
client. It is impossible for the server to introduce an additional resource A’ between A
and B and have the client automatically consume it. However, if resource A were to
contain a link with rel='next' and the client were instructed to follow the next links
until it finds a link to resource C, then the server has the option to add and remove
intermediate steps without breaking the client.

Need to Know
Moving the application workflow to the server leads to a client architecture where the
client can be extremely smart about processing individual representations based on their
declared media types, and can implement sophisticated interaction mechanisms based
on the semantics of link relations. However, the user agent can remain completely un‐
informed about how its individual actions fit into the application as a whole. This ig‐
norance both simplifies the client code and facilitates change over time. It also enables
the same web browser client to let you perform banking transactions and then browse
recipe websites looking for inspiration for dinner.

Often, client applications may not want to completely hand over the workflow control
to the server. Maybe a client is actually interacting with multiple unrelated services, or
perhaps trying to achieve goals never envisioned by the server developers. Even in these
cases, there can be benefits to taking a more moderate approach to giving up workflow
control.

One way to enable the server to take over some of the workflow responsibilities is to
start defining client behavior in terms of goals expressed in the application domain,
rather than in terms of HTTP interactions. In traditional client applications, it is com‐
mon to see a 1:1 relationship between application methods and HTTP requests. How‐
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ever, actually satisfying the user’s intent may require multiple HTTP requests. By en‐
capsulating the interactions required to achieve that goal, we can build a unit of work
that is more resilient to change.

Assuming we have a way to encapsulate the process of achieving the user’s goal, we want
to enable some flexibility in how that goal might be achieved. Today, it may require two
HTTP requests, but in the future when the server identifies that this particular sequence
is called frequently by many users, it may optimize the API to achieve the goal in a single
request. Ideally, the client can take advantage of this optimization without having to
change.

To enable that kind of flexibility, we need to react to HTTP responses rather than ex‐
pecting them. Standard HTTP client libraries already do this to an extent. Consider a
scenario where a client retrieves a representation from resource A. The server API has
some resources that require authentication, and others that do not. The HttpClient has
a set of credentials but does not use them when accessing resource A because it is not
required. Due to external forces, the server decides it must change its behavior and
require authorization for resource A. When the client attempts to retrieve resource A,
it receives a 401 error and a www-authenticate header. The client understands the
problem and can react by resending the request with the credentials. This set of inter‐
actions can all happen completely transparently to the client application making the
HTTP request.

Some HTTP clients see the same reactive behavior when receiving redirect (3XX) status
codes. The HTTP library takes care of converting the single request into multiple ones
that achieve the original goal.

By taking this same idea but implementing it within the application domain, we can
achieve a similar level of resiliency to many more kinds of changes that previously would
be considered breaking changes.

Consider the following code snippet, which could be part of a client application:

public void SelectIssue(IssueLink issueLink) {

        var response = await _httpClient.SendAsync(issueLink.CreateRequest());

        var issue = issueLink.ParseResponse(response);

        var form = new IssueForm();
        form.Display(issue);

}

Now consider the following:

public void Select(Link aLink) {

        var response = await _httpClient.SendAsync(aLink.CreateRequest());

Application Workflow | 215



        List<Issue> issues =  new List<Issue>();

        switch(response.Content.Headers.ContentType.MediaType) {

                case "application/collection+json" :
                        LoadIssues(issues, response.Content)
                        break;

                case "application/issue+json" :
                        issues.Add(issueLink.ParseResponse(response));
                        break;
        }

        foreach(var issues in issues) {
                var form = IssueFormFactory.CreateIssueForm();
                form.Display(issue);
    }
}

This is a fairly contrived example that only begins to hint at what is possible. In this
example, we recognize that there may be different media types returned from the re‐
quest. If the link returns just a single issue, then we display that; if it returns a collection,
then we search for links to issues, load the entire set, and display each of them.

Client applications get really interesting when you can do the following:

public void Select(Link aLink) {

        var response = await _httpClient.SendAsync(aLink.CreateRequest());
        GlobalHandler.HandleResponse(aLink, response);
}

With this approach, the client application has no more context than the link used to
retrieve the response, and the actual response message itself, with which to process the
response message. This provides the ultimate in workflow decoupling and is much like
how a web browser works.

Handle all the versions
When a server makes an optimization to its API, it is quite likely that the client does
not have the necessary knowledge to take advantage of the optimization. As long as the
server leaves the unoptimized interaction mechanism in place, clients will continue to
operate, blissfully unaware of the fact that there is a faster way. In the next release of the
client, code can be introduced to take advantage of the optimization, if it is available.
The key is for the client to do the necessary feature detection to determine if the feature
is available. This is less of a concern when there is only one instance of the server API,
like Twitter or Facebook, for example. However, if you are developing a client library
for a product like WordPress, you cannot guarantee what features of a server API will
be available.
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This combination of reactive behavior and feature detection is what enables clients and
servers to continue to interoperate without the need for version number coordination.
This capability is something that should be planned from the beginning. It is not some‐
thing that would likely be easy to retrofit into an existing client.

Change is inevitable
There are a variety of scenarios where a server can make changes to which a client can
adapt. We’ll discuss a few that occur fairly regularly.

By regularly analyzing the paths that clients take through an API, a server may decide
to introduce a shortcut link that bypasses some intermediary representations. Some‐
times it does this by adding an extra parameter to a URI template. Clients can look for
the shortcut link by link relation; if the link isn’t there, then they can revert to the long
way.

An API may introduce a new representation format that might be more efficient or carry
more semantics. New media types are being created all the time. When a client imple‐
ments support for this new format, it can add that type to its Accept header to let the
server know that it supports that new format. In order to remain compatible with old
versions of the API, the client still needs to maintain support for the old format. As‐
suming the client is designed with the knowledge that multiple return formats are pos‐
sible, this is usually trivial to do.

When doing representation design, servers need to decide when to embed information
about related resources or provide a link. Sometimes they need to change that decision.
If a representation gets too large, then embedded resources may need to be replaced by
links. If certain related links are always followed, then it may be more efficient to return
the content embedded. Building a client that can transparently embed a linked repre‐
sentation if necessary allows the server to change the nature of the representation and
not break the client.

Clients that are human-driven often are responsible for presenting a set of available
resource links to a user. In these cases, iterating through the links in a page and displaying
each link is a better approach than binding static UI elements to known links. By build‐
ing UI dynamically, the server can add resource links and the client can automatically
access them.

When resource links are removed, even if they are bound to fixed UI elements, those
elements can be disabled to indicate that the resource is no longer available. Clients
should not break just because a link no longer exists. Sometimes the removal of a link
may prohibit the user from achieving a specific goal, but we can assume that other goals
are still possible. The removal of a capability should not be a breaking change for clients.
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Servers can move resources to a new URI, either due to some reorganization of the URI
space, or perhaps due to an effort to partition server load by moving a resource to a new
host. Clients should be able to handle the redirection requests transparently.

Whenever a server adds new query parameters to a link, it should provide default values
for those additional parameters. If it doesn’t then it would be a breaking change, in
which case it should add a new link and link relation to define the new requirements.
A client application should be able to safely continue to use a link without specifiying
the new parameter. Future updates to the client should be able to take advantage of the
new parameter.

A server that finds it no longer needs a parameter to identify the resource should update
the URI template to not include the value token. Client code should not fail when trying
to set a parameter that is not in the URI template. The resolved URL should not include
the removed parameter, or the server could return a 404.

In some scenarios, a resource that previously accepted both GET and POST may be split
and a distinct resource created to handle the POST. In these cases, a secondary link and
link relation should be included and a redirect from the original POST should be im‐
plemented to handle the transition period.

A sequence of interactions may require an additional step. In this case, it may be possible
to annotate a link in the extra step as a “default” link and to build a client to follow a
default link if it does not know how else to process a particular representation.

The Link Hints IETF Internet draft introduces the ability to decorate links with depre‐
cated attributes. This is one way to notify clients that links will no longer be supported
in the future. Additionally, server developers should log the use of deprecated links and
record the user agents that accessed the resource. This allows out-of-band communi‐
cation to occur to encourage client developers to remove their use of deprecated links.

Undoubtedly, there are many other changes that can occur to a server API. However,
these examples indicate that the web architecture has been designed in such a way that
clients can adapt to these changes. By redirecting our efforts away from the drudgery
of managing client and server version compliance, and toward handling potential
changes in the API, we can evolve faster and keep our users happier.

Clients with Missions
In a completely human-driven experience like a web browser, it feels like a 1:1 interac‐
tion model, but it is not. Clicking on a single link causes a single HTML page to load;
however, from that the browser loads linked stylesheets, images, and scripts. Only once
all of these requests have been made can the goal of displaying the page be considered
complete.
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As much as I have tried, I am unable to find a name that better describes this encapsu‐
lation of interactions than mission. A mission is an implementation of the necessary
requests and response handling to achieve a client’s goal. One advantage of it being a
fairly goofy-sounding name is that we avoid overloading some other software term, like
task or transaction. It also highlights the fact that it is the objective that is important
rather than the details of how it is achieved. It also happens to fit rather amusingly with
the fact that HTTP clients are regularly referred to as agents.

Previously we have discussed how link relations can be used to identify the semantics
of an HTTP interaction. Sometimes link relations also confer the need for multiple
interactions. The link relation search is one example. A search link points to an Open
SearchDescription document that contains information about how to conduct a
search of resources on a website or API. At its simplest, the description document con‐
tains a URL template with a {searchTerms} token that can be replaced by the client’s
actual search terms.

The following class demonstrates how to create a mission that encapsulates the behavior
of getting the OpenSearchDescription document, interpreting it, constructing a URL,
performing the search, and returning the results of the search:

public class SearchMission
    {
        private readonly HttpClient _httpClient;
        private readonly SearchLink _link;

        public SearchMission(HttpClient httpClient, SearchLink link)
        {
            _httpClient = httpClient;
            _link = link;
        }

        public async Task<HttpResponseMessage> GoAsync(string param)
        {
            var openSearchDescription = await LoadOpenSearchDescription();
            var link = openSearchDescription.Url;
            link.SetParameter("searchTerms", param);
            return await _httpClient.SendAsync(link.CreateRequest());
        }

        private async Task<OpenSearchDescription> LoadOpenSearchDescription()
        {
            var response = await _httpClient.SendAsync(_link.CreateRequest());
            var desc = await response.Content.ReadAsStreamAsync();
            return new OpenSearchDescription(
                        response.Content.Headers.ContentType, desc);
        }

    }
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The mission class itself does not include the details of how to interpret the OpenSearch
Description; that is left to a media type parser library. The mission focuses just on the
coordination of the interactions. A SearchMission object can be held to perform mul‐
tiple searches.

Missions can be completely algorithmic-based interactions with HTTP resources. A
client application initiates a mission, and execution continues until either a goal is
reached or the mission fails. Missions can become a unit of reuse and can be combined
to achieve larger goals.

Missions can also be interactive processes where after some set of interactions, control
is returned to a human to provide further direction. To achieve this, missions need to
be designed with some kind of interface to a user interface layer. This interface must
allow a mission to display the current state to the user and accept further direction. The
user interface layer must provide the human with a set of links to select from and then
convey the selected link back to the mission.

The following example is a very simple interactive mission and a small console appli‐
cation that works as a hypermedia REPL (read-eval-print loop). The client application
must call GoAsync with a link. The mission will follow the link and extract any links that
are included in the returned representation. Those links are made available as a dictio‐
nary keyed by link relation. A simple console application uses a loop to allow a user to
view the initial representation and choose to follow another link by entering the link
relation name. The client then requests that the mission follows that link and reparses
the links.

    public class ExploreMission
    {
        private readonly HttpClient _httpClient;

        public Link ContextLink { get; set; }
        public HttpContent CurrentRepresentation { get; set; }
        public Dictionary<string,Link> AvailableLinks { get; set; }

        public ExploreMission(HttpClient httpClient)
        {
            _httpClient = httpClient;
        }

        public async Task GoAsync(Link link)
        {
            var response = await _httpClient.SendAsync(link.CreateRequest());
            if (response.IsSuccessStatusCode)
            {
                ContextLink = link;
                CurrentRepresentation = response.Content;
                AvailableLinks = ParseLinks(CurrentRepresentation);
            }

220 | Chapter 9: Building the Client



        }

        private Dictionary<string,Link>
                ParseLinks(HttpContent currentRepresentation)
        {
            // Parse Links from representation based on the returned media type
        }
    }

    static void Main(string[] args)
    {
        var exploreMission = new ExploreMission(new HttpClient());

        var link = new Link() {Target = new Uri("http://localhost:8080/")};
        string input = null;
        while (input != "exit")
        {
            exploreMission.GoAsync(link).Wait();
            Console.WriteLine(exploreMission.CurrentRepresentation
                        .ReadAsStringAsync().Result);

            Console.Write("Enter link relation to follow link : ");
            input = Console.ReadLine();
            link = exploreMission.AvailableLinks[input];
        }
    }

Useful interactive client applications will obviously have to do significantly more work
than the preceding example. However, the basic premise remains the same: follow a
link, update the client state, present the user with available links, allow the user to select
a link, and repeat.

Client State
Client state, or what is often also referred to as client application state, is the aggregation
of all the ongoing missions that a client application is currently tracking. A web browser
is made up of a set of browsing contexts. Each of these browsing contexts is effectively
a top-level mission.

By building a client application framework that can manage a set of active missions, you
can break down the problem into developing goal-oriented missions that are specified
in terms of application domain concepts.

Althought the set of active missions makes up the client application state, each individual
mission must use caution when accumulating state during the execution of the mission.

Returning to the example of the SearchMission, it would be possible for the Search
Mission object to hold a reference to the OpenSearchDescription object for the pur‐
poses of reuse. However, as soon as the client does that, it takes ownership of the lifetime
of that representation, and removes control from the server. Ideally, the server will have
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specified caching directives that allow the OpenSearchDescription representation to
be cached locally for a long period of time. This ensures that multiple uses of the
SearchMission object will not cause a network roundtrip when requesting the descrip‐
tion document. It also removes the need for the client to manage and share the Search
Mission object reference, and because the local HTTP cache is persistent, the stored
OpenSearchDescription document can be reused across multiple executions of the
client application.

The idea of avoiding holding on to client state is counterintuitive for many people.
Conventional wisdom for building client applications tells us that if we hold on to state
that we have retrieved from a remote server, we may be able to avoid making network
roundtrips in the future. The problem with allowing clients to manage the lifetime of
the resource state is that you can end up with a wide range of ad hoc caching mecha‐
nisms. Usually, these client mechanisms are far less sophisticated than what HTTP can
provide. Often clients support only two lifetime scopes, a global scope constrained by
the lifetime of the application, and some kind of unit of work scope. There is often no
notion of cache expiry, and certainly no equivalent to conditional GETs. By deferring
the majority of client-side caching to HTTP caching, the client code gets simpler, there
are fewer consistency problems because the server can dictate resource lifetimes, and
debugging is simpler because there is less context impacting the reaction of the client
to a server response.

Conclusion
Despite the Web being part of our lives for close to 20 years, our experience with building
clients that embrace its architecture is still very limited. True web clients are mainly
limited to web browsers, RSS feed readers, and web crawlers. There are very few devel‐
opers who have experience developing any of these tools. The recent rise in popularity
of single-page applications has brought a new paradigm where people are trying to build
a user agent inside a user agent, which has its own unique set of challenges.

The rising popularity of native “apps” that rely on distributed services has brought a
renewed interest in building web clients. This first wave of these distributed applications
has tried to replicate the client/server architectures of the 1990s. However, to build apps
that really take advantage of the Web like the web browser does, we need to emulate
some of the architectural characteristics of the web browser.

The techniques discussed in this chapter enable developers to build clients that will last
longer, break less often, perform better, and be more tolerant of network failures. Un‐
fortunately, to date, there are very few support libraries available to make this easier.
Hopefully, as more developers start to understand the benefits of building loosely cou‐
pled clients that can evolve, more tooling will become available.
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As the first step down this path, when you are writing client code that makes a network
request, stop, think, and ask yourself, what happens if what I am expecting to happen,
doesn’t? How can HTTP help me handle that?
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CHAPTER 10

The HTTP Programming Model

The messages, the whole messages, and nothing but the messages.

This chapter presents the new .NET Framework HTTP programming model, which is
at the core of both ASP.NET Web API and the new client-side HTTP support, specifically
the HttpClient class. This model was introduced with .NET 4.5 but is also available
for .NET 4.0 via NuGet packages. It defines a new assembly—System.Net.Http.dll—
with typed programming abstractions for the main HTTP concepts (namely, request
and response messages, headers, and body content).

This model is complemented by the System.Net.Http.Formatting.dll assembly,
which introduces the media type formatter concept, described in Chapter 13, as well as
some utility extension methods and custom HTTP content types. This assembly is
available via the “Microsoft ASP.NET Web API Client Libraries” NuGet package, and
its source code is part of the ASP.NET project. Despite its name, this package is usable
on both the client and server sides. In this chapter we will be describing features from
both assemblies, without making any distinction between them.

The .NET Framework already contains more than one programming model for dealing
with HTTP concepts. On the client side, the System.Net.HttpWebRequest class can be
used to initiate HTTP requests and process the associated responses. On the server side,
the System.Web.HttpContext and related classes (e.g., HttpRequest and HttpRes
ponse) are used in the ASP.NET context to represent individual requests and responses.
Also on the server side, the System.Net.HttpListenerContext is used by the self-
hosted System.Net.HttpListener to provide access to the HTTP request and response
objects.

Unfortunately, all these programming models have several problems that the new one
aims to solve. Namely, the new System.Net.Http programming model:

• Uses the same classes on the client and server sides
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• Is based on the new Task Asynchronous Pattern (TAP), not on the old Asynchro‐
nous Programming Model (APM), meaning that it can take advantage of the async
and await language constructs introduced with .NET 4.5

• Is easier to use in test scenarios
• Has a more strongly typed representation of HTTP messages—namely, by repre‐

senting HTTP header values as types, not as loose string dictionaries
• Is more faithful to the HTTP specification, namely by not layering different ab‐

stractions on top of it
• Packages the more recent versions as a portable class library, allowing its use on a

wide range of platforms

In the next sections, all these properties will become clearer as we present this new model
in more detail. We begin by introducing the types for representing the fundamental
HTTP concepts, namely request and response messages. Afterward, we show how both
message and content headers are represented and processed via a set of specific classes.
Finally, we end by showing how to produce and consume the message payload content.

Before we start, note that the old HTTP programming models are still used and sup‐
ported; for instance, the ASP.NET pipeline is still based on the old
System.Net.HttpWebRequest.

Messages
As presented in Chapter 1, the HTTP protocol operates by exchanging request and
response messages between clients and servers. Naturally, the message abstraction is at
the center of the HTTP programming model, and is represented by two concrete classes,
HttpRequestMessage and HttpResponseMessage, that belong to the new Sys
tem.Net.Http namespace and are represented in Figure 10-1. Both messages comprise:

• A start line
• A sequence of header fields
• An optional payload body
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Figure 10-1. The HttpRequestMessage and HttpResponseMessage classes

For requests, the start line is represented by the following HttpRequestMessage prop‐
erties:

• The request’s Method (e.g., GET or POST), defining the request purpose
• The RequestUri, identifying the targeted resource
• The protocol Version (e.g., 1.1)

For responses, the start line is represented by the following HttpResponseMessage
properties:

• The protocol Version (e.g. 1.1)
• The request StatusCode (a three-digit integer) and the informational Reason
Phrase string

The response message also contains a reference to the associated request message, via
the RequestMessage property.

Both the request and response messages can contain an optional message body, repre‐
sented by the Content property. In the section “Message Content” on page 237, we will

Messages | 227



address in greater detail how the message content is represented, created, and consumed,
including a description of the HttpContent-based class hierarchy.

These two message types as well as the content can be enriched with metadata, in the
form of associated headers. The programming model for dealing with these headers will
be addressed in the section “Headers” on page 231.

The HttpRequestMessage and HttpResponseMessage classes are nonabstract and can
be easily instantiated in user code, as shown in the following examples:

[Fact]
public void HttpRequestMessage_is_easy_to_instantiate()
{
    var request = new HttpRequestMessage(
        HttpMethod.Get,
        new Uri("http://www.ietf.org/rfc/rfc2616.txt"));

    Assert.Equal(HttpMethod.Get, request.Method);
    Assert.Equal(
        "http://www.ietf.org/rfc/rfc2616.txt",
        request.RequestUri.ToString());
    Assert.Equal(new Version(1,1), request.Version);
}

[Fact]
public void HttpResponseMessage_is_easy_to_instantiate()
{
    var response = new HttpResponseMessage(HttpStatusCode.OK);
    Assert.Equal(HttpStatusCode.OK, response.StatusCode);
    Assert.Equal(new Version(1,1), response.Version);
}

This makes these message classes very easy to use in testing scenarios, which contrasts
with other .NET Framework classes used to represent the same concepts:

• The System.Web.HttpRequest class, used in the ASP.NET System.Web.HttpCon
text to represent a request, has a public constructor but is reserved for infrastruc‐
ture only.

• The System.Web.HttpRequestBase class, used in ASP.NET MVC, is abstract and
cannot be directly instantiated.

• The System.Net.HttpWebRequest class, used to represent HTTP requests on the
client side, has public constructors, but they are obsolete. Instead, this class should
be instantiated via the WebRequest.Create factory method.

The HttpRequestMessage and HttpResponseMessage classes are also usable both on
the client side and on the server side, because they represent only the HTTP messages
and not other contextual properties. This contrasts with other HTTP classes, such as
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the ASP.NET HttpRequest class that contains a property with the virtual application
root path on the server, which obviously doesn’t make sense on the client side.

The request method is represented by HttpMethod instances, containing the method
string (e.g., GET or POST). This class also contains a set of static public properties with
the methods defined in RFC 2616:

public class HttpMethod : IEquatable<HttpMethod>
{
        public string Method {get;}
        public HttpMethod(string method);

        public static HttpMethod Get {get;}
        public static HttpMethod Put {get;}
        public static HttpMethod Post {get;}
        public static HttpMethod Delete {get;}
        public static HttpMethod Head {get;}
        public static HttpMethod Options {get;}
        public static HttpMethod Trace {get;}
}

To use a new method, such as the PATCH method defined in RFC 5789, we must explicitly
instantiate an HttpMethod with the method’s string, as shown in the following example:

[Fact]
public async Task New_HTTP_methods_can_be_used()
{
    var request = new HttpRequestMessage(
        new HttpMethod("PATCH"),
        new Uri("http://www.ietf.org/rfc/rfc2616.txt"));
    using(var client = new HttpClient())
    {
        var resp = await client.SendAsync(request);
        Assert.Equal(HttpStatusCode.MethodNotAllowed, resp.StatusCode);
    }
}

The response’s status code is represented by the HttpStatusCode enumeration, con‐
taining all the status codes defined by the HTTP specification:

public enum HttpStatusCode
  {
    Continue = 100,
    SwitchingProtocols = 101,
    OK = 200,
    Created = 201,
    Accepted = 202,
    ...
    MovedPermanently = 301,
    Found = 302,
    SeeOther = 303,
    NotModified = 304,
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    ...
    BadRequest = 400,
    Unauthorized = 401,
    ...
    InternalServerError = 500,
    ...
  }

We can also use new status codes by casting integers to HttpStatusCode:

[Fact]
public void New_status_codes_can_also_be_used()
{
    var response = new HttpResponseMessage((HttpStatusCode) 418)
                       {
                           ReasonPhrase = "I'm a teapot"
                       };
    Assert.Equal(418, (int)response.StatusCode);
}

The HttpRequestMessage also contains a Properties property:

public IDictionary<string, Object> Properties { get; }

This is used to hold additional message information, while it is being processed locally
on the server or client side. For instance, it can hold information that is produced at the
bottom layers of the processing stack (e.g., message handlers) and is consumed at the
upper layers (e.g., controllers).

The Properties property doesn’t reflect any standard HTTP message part and is not
retained when the message is serialized for transfer. Instead, it is just a generic container
for local message properties, such as:

• The client certificate associated with the connection on which the message was
received

• The route data resulting from matching the message with the set of configured
routes

These properties are stored in a dictionary and associated with string keys. The HttpPro
pertyKeys class defines a set of commonly used keys. Typically, these message properties
are accessed via extension methods, such as the ones defined in the Sys

tem.Net.Http.HttpRequestMessageExtensions class as follows:

public static IHttpRouteData GetRouteData(this HttpRequestMessage request)
{
  if (request == null)
    throw System.Web.Http.Error.ArgumentNull("request");
  else
    return HttpRequestMessageExtensions.GetProperty<IHttpRouteData>(
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                                request, HttpPropertyKeys.HttpRouteDataKey);
}

The HttpRequestContext class, introduced with Web API v2, is another example of
information that is attached to the request’s properties by the lower hosting layer and
then consumed by the upper layers:

public static HttpRequestContext
    GetRequestContext(this HttpRequestMessage request)
{
    ...
    return request.GetProperty<HttpRequestContext>(
        HttpPropertyKeys.RequestContextKey);
}

public static void
    SetRequestContext(this HttpRequestMessage request,
                      HttpRequestContext context)
{
    ...
    request.Properties[HttpPropertyKeys.RequestContextKey] = context;
}

Namely, this class aggregates a set of properties, such as the client certificate or the
requestor’s identity, into one typed model:

public class HttpRequestContext
{
    public virtual X509Certificate2 ClientCertificate { get; set; }
    public virtual IPrincipal Principal { get; set; }
    // ...
}

Headers
In HTTP, both the request and response messages, and the message content itself, can
be augmented with information in the form of extra fields called headers. For instance:

• The User-Agent header field extends a request with information describing the
application that produced it.

• The Server header field extends a response with information about the origin-
server software.

• The Content-Type header field defines the media type used by the representation
in the request or response payload body.

Each header is characterized by a name and a value, which can be a list. The HTTP
specification allows for multiple headers with the same name on a message. However,
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this specification also states that this is equivalent to only one header occurrence with
both values combined. The set of registered HTTP headers is maintained by IANA.

As demonstrated in Figure 10-1, both the request and the response message classes have
a Headers property referencing a typed header container class. However, the content
headers (e.g., Content-Type) are not in the request or response header collection. In‐
stead, they are in a content header collection, accessible via the HttpContent.Headers
property:

[Fact]
public async void Message_and_content_headers_are_not_in_same_coll()
{
    using(var client = new HttpClient())
    {
        var response = await client
            .GetAsync("http://tools.ietf.org/html/rfc2616");
        var request = response.RequestMessage;
        Assert.Equal("tools.ietf.org",request.Headers.Host);
        Assert.NotNull(response.Headers.Server);
        Assert.Equal("text/html",
            response.Content.Headers.ContentType.MediaType);
    }
}

Notice how the Server header is in the response.Headers container, but the Content
Type header is in the response.Content.Headers container.

The HTTP programming model defines three header container classes, one for each of
the header contexts:

• The HttpRequestHeaders class contains the request headers
• The HttpResponseHeaders class contains the response headers
• The HttpContentHeaders class contains the content headers

These three classes have a set of properties exposing the standard headers in a strongly
typed way. For instance, the HttpRequestHeaders class contains an Accept property,
declared as a MediaTypeWithQualityHeaderValue collection, where each item contains:

• The MediaType string property with the media type identifier (e.g., application/
xml)

• The Quality property (e.g., 0.9)
• The CharSet string property
• The Parameters collection property
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The following excerpt shows how easy it is to consume the Accept header, since the
class model provides access to all the constituent parts (e.g., quality parameter, char set):

[Fact]
public void Classes_expose_headers_in_a_strongly_typed_way()
{
    var request = new HttpRequestMessage();
    request.Headers.Add(
        "Accept",
        "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8");

    HttpHeaderValueCollection<MediaTypeWithQualityHeaderValue> accept =
        request.Headers.Accept;
    Assert.Equal(4,accept.Count);

    MediaTypeWithQualityHeaderValue third = accept.Skip(2).First();
    Assert.Equal("application/xml", third.MediaType);
    Assert.Equal(0.9, third.Quality);
    Assert.Null(third.CharSet);
    Assert.Equal(1,third.Parameters.Count);
    Assert.Equal("q",third.Parameters.First().Name);
    Assert.Equal("0.9", third.Parameters.First().Value);
}

This feature greatly simplifies both the production and consumption of headers, ab‐
stracting away the sometimes cumbersome HTTP syntactical rules. These properties
can also be used to easily construct header values:

[Fact]
public void Properties_simplify_header_construction()
{
    var response = new HttpResponseMessage();
    response.Headers.Date =
        new DateTimeOffset(2013,1,1,0,0,0, TimeSpan.FromHours(0));
    response.Headers.CacheControl = new CacheControlHeaderValue
    {
        MaxAge = TimeSpan.FromMinutes(1),
        Private = true
    };

    var dateValue = response.Headers.First(h => h.Key == "Date")
        .Value.First();
    Assert.Equal("Tue, 01 Jan 2013 00:00:00 GMT", dateValue);

    var cacheControlValue = response.Headers
        .First(h => h.Key == "Cache-Control").Value.First();
    Assert.Equal("max-age=60, private", cacheControlValue);
}

Notice how the CacheControlHeaderValue class contains a property for each HTTP
cache directive (e.g., MaxAge and Private). Notice also how the Date header is con‐
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structed from a DateTimeOffset and not from a string, simplifying the construction of
correctly formated header values.

Some header values are scalar (e.g., Date) and can be assigned directly, while others are
collections represented by the HttpHeaderValueCollection<T> generic class, allowing
for value addition and removal:

request.Headers.Date = DateTimeOffset.UtcNow;
request.Headers.Accept.Add(new MediaTypeWithQualityHeaderValue("text/html",1.0));

Figure 10-2 shows the three header container classes, one for each header context. These
classes don’t have public constructors and can’t be easily instantiated in isolation. In‐
stead, they are created when a message or content instance is created.

The properties exposed by each one of these classes are restricted to the headers defined
by the HTTP RFC. For instance, HttpRequestHeaders contains only properties corre‐
sponding to the headers that can be used on an HTTP request. Specifically, it does not
provide a way to add nonstandard headers. However, all three classes derive from an
HttpHeaders abstract class, shown in Figure 10-3, which provides a set of methods for
more low-level access to headers.
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Figure 10-2. The three header container classes
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Figure 10-3. The HttpHeaders base class provides untyped access to a header collection

First, the HttpHeaders class implements the following interface:

IEnumerable<KeyValuePair<string,IEnumerable<string>>>

This provides access to all the headers as a sequence of pairs, where the header name is
a string and the header value is a string sequence. This interface preserves the header
ordering and takes into account that header values can be lists. The HttpHeaders class
also contains a set of methods for adding and removing headers.

The Add method allows for the addition of headers to the container. If the header has a
standard name, its value is validated prior to addition. The Add method also validates if
the header can have multiple values:

[Fact]
public void Add_validates_value_domain_for_std_headers()
{
    var request = new HttpRequestMessage();
    Assert.Throws<FormatException>(() =>
        request.Headers.Add("Date", "invalid-date"));
    request.Headers.Add("Strict-Transport-Security", "invalid ;; value");
}

On the other hand, the TryAddWithoutValidation method does not perform header
value validation. However, if the value is not valid, it will not be accessible via the typed
properties:

[Fact]
public async void
    TryAddWithoutValidation_doesnt_validates_the_value_but_preserves_it()
{
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    var request = new HttpRequestMessage();
    Assert.True(request.Headers
        .TryAddWithoutValidation("Date", "invalid-date"));
    Assert.Equal(null, request.Headers.Date);
    Assert.Equal("invalid-date", request.Headers.GetValues("Date").First());

    var content = new HttpMessageContent(request);
    var s = await content.ReadAsStringAsync();
    Assert.True(s.Contains("Date: invalid-date"));
}

After seeing how message and content can be enriched with headers, in the next section
we focus our attention on the content itself.

Message Content
In the new HTTP programming model, the HTTP message body is represented by the
abstract HttpContent base class, shown in Figure 10-4. Both the HttpRequestMes
sage and HttpResponseMessage have a Content property of this type, as previously
depicted in Figure 10-1.

In this section, we will show how:

• Message content can be consumed via the HttpContent methods.
• Message content can be produced via one of the existing HttpContent-derived

concrete classes or through the creation of a new class.

Message Content | 237



Figure 10-4. The HttpContent base class and associated hierarchy

Consuming Message Content
When producing message content, we can choose one of the available concrete
HttpContent-derived classes. However, when consuming message content, we are limi‐
ted to the HttpContent methods or extension methods.

In addition to the Headers property described in the previous section, the HttpCon
tent contains the following public, nonvirtual methods:

• Task CopyToAsync(Stream, TransportContext)

• Task<Stream> ReadAsStreamAsync()

• Task<string> ReadAsStringAsync()

• Task<byte[]> ReadAsByteArrayAsync()

The first one allows for the consumption of the raw message content in a push style: we
pass a stream to the CopyToAsync method that then writes (pushes) the message content
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into that stream. The returned Task can be used to synchronize with the copy termi‐
nation:

[Fact]
public async Task HttpContent_can_be_consumed_in_push_style()
{
    using (var client = new HttpClient())
    {
        var response =
            await client.GetAsync("http://www.ietf.org/rfc/rfc2616.txt",
            HttpCompletionOption.ResponseHeadersRead
            );
        response.EnsureSuccessStatusCode();
        var ms = new MemoryStream();
        await response.Content.CopyToAsync(ms);
        Assert.True(ms.Length > 0);
    }
}

The previous example uses the HttpCompletionOptions.ResponseHeadersRead option
to allow GetAsync to terminate immediately after the response headers are read. This
allows the response content to be consumed without buffering, using the CopyToA
sync method.

Alternatively, the ReadAsStreamAsync method allows for the consumption of the raw
message content in a pull style: it asynchronously returns a stream, from where the
content can then be pulled:

[Fact]
public async Task HttpContent_can_be_consumed_in_pull_style()
{
    using (var client = new HttpClient())
    {
        var response = await
            client.GetAsync("http://www.ietf.org/rfc/rfc2616.txt");
        response.EnsureSuccessStatusCode();
        var stream = await response.Content.ReadAsStreamAsync();
        var buffer = new byte[2*1024];
        var len = await stream.ReadAsync(buffer, 0, buffer.Length);
        var s = Encoding.ASCII.GetString(buffer, 0, len);
        Assert.True(s.Contains("Hypertext Transfer Protocol -- HTTP/1.1"));
    }
}

The last two methods, ReadAsStringAsync and ReadAsByteArrayAsync, asynchro‐
nously provide a buffered copy of the message contents: the latter returns the raw byte
content while the former decodes that content into a string:

[Fact]
public async Task HttpContent_can_be_consumed_as_a_string()
{
    using (var client = new HttpClient())
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    {
        var response = await
            client.GetAsync("http://www.ietf.org/rfc/rfc2616.txt");
        response.EnsureSuccessStatusCode();
        var s = await response.Content.ReadAsStringAsync();
        Assert.True(s.Contains("Hypertext Transfer Protocol -- HTTP/1.1"));
    }
}

In addition to the HttpContent instance methods, there are also extension methods
defined in the HttpContentExtensions static class. All these methods are variations of
the following:

public static Task<T> ReadAsAsync<T>(
    this HttpContent content,
    IEnumerable<MediaTypeFormatter> formatters,
    IFormatterLogger formatterLogger)

This method receives a sequence of media type formatters and tries to use one of them
to read the message content as a T instance:

class GitHubUser
{
    public string login { get; set; }
    public int id { get; set; }
    public string url { get; set; }
    public string type { get; set; }
}

[Fact]
public async Task HttpContent_can_be_consumed_using_formatters()
{
    using (var client = new HttpClient())
    {
        var response = await
            client.GetAsync("https://api.github.com/users/webapibook");
        response.EnsureSuccessStatusCode();
        var user = await response.Content
            .ReadAsAsync<GitHubUser>(new MediaTypeFormatter[]
            {
                new JsonMediaTypeFormatter()
            });
        Assert.Equal("webapibook", user.login);
        Assert.Equal("Organization", user.type);
    }
}

Recall that media type formatters, presented in greater detail in Chapter 13, are classes
that extend the abstract MediaTypeFormatter class and perform bidirectional conver‐
sions between objects and byte stream representations, as defined by Internet media
types.
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There is also an overload that doesn’t receive the media type formatter sequence. Instead,
it uses a set of default formatters, which currently are JsonMediaTypeFormatter, XmlMe
diaTypeFormatter, and FormUrlEncodedMediaTypeFormatter.

Creating Message Content
When creating messages with nonempty payload, we assign the Content property with
an instance of an HttpContent derived class, chosen in accordance with the content
type. Figure 10-4 shows some of the available classes. For instance, if the message content
is plain text, then the StringContent class can be used to represent it:

[Fact]
public void StringContent_can_be_used_to_represent_plain_text()
{
    var response = new HttpResponseMessage()
        {
            Content = new StringContent("this is a plain text representation")
        };
    Assert.Equal("text/plain", response.Content.Headers.ContentType.MediaType);
}

By default, the Content-Type header is set to text/plain, but this value can be over‐
riden.

The FormUrlEncodedContent class is used to produce name/value pair content, encoded
according to the application/x-www-form-urlencoded rules—the same encoding
rules used by HTML forms. The name/value pairs are defined via an IEnumerable<Key
ValuePair<string,string>> passed in the FormUrlEncondedContent constructor:

[Fact]
public async Task FormUrlEncodedContent_can_represent_name_value_pairs()
{
    var request = new HttpRequestMessage
        {
            Content = new FormUrlEncodedContent(
                new Dictionary<string, string>()
                    {
                        {"name1", "value1"},
                        {"name2", "value2"}
                    })
        };
    Assert.Equal("application/x-www-form-urlencoded",
        request.Content.Headers.ContentType.MediaType);
    var stringContent = await request.Content.ReadAsStringAsync();
    Assert.Equal("name1=value1&name2=value2", stringContent);
}

The programming model also provides three additional classes for when the content is
already available as a byte sequence. The ByteArrayContent class is used when the
content is already contained in a byte array:

Message Content | 241



[Fact]
public async Task ByteArrayContent_can_represent_byte_sequences()
{
    var alreadyExistantArray = new byte[] { 0x48, 0x65, 0x6c, 0x6c, 0x6f};
    var content = new ByteArrayContent(alreadyExistantArray);
    content.Headers.ContentType = new MediaTypeHeaderValue("text/plain")
        { CharSet = "utf-8" };
    var readText = await content.ReadAsStringAsync();
    Assert.Equal("Hello", readText);
}

The StreamContent and PushStreamContent classes are both used for dealing with
streams: the StreamContent is adequate for when the content is already available as a
stream (e.g., reading from a file), while the PushStreamContent class is used when the
content is produced by a stream writer.

The StreamContent instance is created with the stream defined in the constructor. Af‐
terward, when serializing the HTTP message, the HTTP model runtime will pull the
byte sequence from this stream and add it to the serialized message body:

[Fact]
public async Task StreamContent_can_be_used_when_content_is_in_a_stream()
{
    const string thisFileName = @"..\..\HttpContentFacts.cs";
    var stream = new FileStream(thisFileName, FileMode.Open, FileAccess.Read);
    using (var content = new StreamContent(stream))
    {
        content.Headers.ContentType = new MediaTypeHeaderValue("text/plain");

        // Assert
        var text = await content.ReadAsStringAsync();
        Assert.True(text.Contains("this string"));
    }
    Assert.Throws<ObjectDisposedException>(() => stream.Read(new byte[1], 0, 1));
}

The stream will be disposed when the wrapping StreamContent is disposed (e.g., by the
Web API runtime).

There are, however, scenarios where the content is not already on a stream. Instead, the
content is produced by a process that requires a stream into which to write the content.
A typical example is XML serialization using a XmlWriter, which requires an output
stream in which to write the serialized bytes. A solution would be to use an intermediary
MemoryStream where the stream writer writes the contents, and then give this memory
stream to a StreamContent instance. However, this solution implies an intermediate
copy and is not well suited for streaming scenarios.

A better solution is to use the PushStreamContent class, which receives an Ac
tion<Stream, ...> and works in a push-style manner: when the runtime has a stream
available (e.g., the underlying ASP.NET response context stream), it calls the action with
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the stream. It is the action’s responsibility to write the contents to this final stream,
without any intermediate buffering:

[Fact]
public async Task
    PushStreamContent_can_be_used_when_content_is_provided_by_a_stream_writer()
{
    var xml = new XElement("root",
                                 new XElement("child1", "text"),
                                 new XElement("child2", "text")
        );
    var content = new PushStreamContent((stream, cont, ctx) =>
        {
            using (var writer = XmlWriter.Create(stream,
                new XmlWriterSettings { CloseOutput = true }))
            {
                xml.WriteTo(writer);
            }
        });
    content.Headers.ContentType =
        new MediaTypeWithQualityHeaderValue("application/xml");

    // Assert
    var text = await content.ReadAsStringAsync();
    Assert.True(text.Contains("<child1"));
}

An important aspect to highlight is that the action does not need to write all the contents
synchronously. In fact, the runtime considers the contents to be completely written only
when the stream is closed, not when the action returns. This means that the contents
can be written by code scheduled by the action (e.g., asynchronous task or timer call‐
back), after the action has returned. The only requirement is that the stream’s Close
method be called, in order to signal that the content is completely written. Unfortunately,
if an error occurs after the action returns, there is no way to signal it to the runtime.
The only possible behavior is to close the stream, which does not distinguish success
from failure. To address this problem, newer versions of the System.Net.Http.Format
ting.dll assembly provide a PushStreamContent overload receiving a Func<Stream,
HttpContent, TransportContext, Task>. This allows the asynchronous code to re‐
turn a Task, providing a way to signal the ocurrences of exceptions back to the runtime.
In the following example, note that the lambda expression is prefixed with async,
meaning that it will return a Task:

[Fact]
public async Task PushStreamContent_can_be_used_asynchronously()
{
    const string text = "will wait for 2 seconds without blocking";
    var content = new PushStreamContent(async (stream, cont, ctx) =>
    {
        await Task.Delay(2000);
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        var bytes = Encoding.UTF8.GetBytes(text);
        stream.Write(bytes, 0, bytes.Length);
        stream.Close();
    });
    content.Headers.ContentType =
        new MediaTypeWithQualityHeaderValue("text/plain");

    // Assert
    var sw = new Stopwatch();
    sw.Start();
    var receivedText = await content.ReadAsStringAsync();
    sw.Stop();
    Assert.Equal(text, receivedText);
    Assert.True(sw.ElapsedMilliseconds > 1500);
}

The previous content classes require the content to already be represented as a byte
sequence. However, the new HTTP programming model also contains the ObjectCon
tent and ObjectContent<T> classes, providing a way to define HTTP message content
directly from an object. Internally, these classes use media type formatters to convert
the object into the byte sequence.

The following example shows the production of a JSON representation for an anony‐
mous object with three fields. Notice that the media type formatter used—JsonMedia

TypeFormatter, in this case—must be explicitly defined in the ObjectContent con‐
structor:

[Fact]
public async Task ObjectContent_uses_mediatypeformatter_to_produce_the_content()
{
    var representation = new
        {
         field1 = "a string",
         field2 = 42,
         field3 = true
        };
    var content = new ObjectContent(
        representation.GetType(),
        representation,
        new JsonMediaTypeFormatter());

    // Assert
    Assert.Equal("application/json",content.Headers.ContentType.MediaType);
    var text = await content.ReadAsStringAsync();
    var obj = JObject.Parse(text);
    Assert.Equal("a string", obj["field1"]);
    Assert.Equal(42, obj["field2"]);
    Assert.Equal(true, obj["field3"]);
}
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The ObjectContent receives both the input object value and object type. The generic
version, ObjectContent<T>, is just a simplification where the input type is given as a
generic parameter.

The new programming model also has a set of extension methods, contained in multiple
HttpRequestMessageExtensions classes, that aim to simplify the creation of responses
from requests. For instance, you can create a response message that is automatically
linked to the request message:

[Fact]
public void HttpRequestMessage_has_a_CreateResponse_extension_method()
{
    var request =
        new HttpRequestMessage(HttpMethod.Get,
            new Uri("http://www.example.net"));
    var response = request.CreateResponse(HttpStatusCode.OK);
    Assert.Equal(request, response.RequestMessage);
}

You can also use a CreateResponse overload to create a representation from an object,
given a media type formatter, similarly to what you can do with ObjectContent:

public void CreateResponse_can_receive_a_formatter()
{
    var request =
        new HttpRequestMessage(HttpMethod.Get,
            new Uri("http://www.example.net"));

    var response = request.CreateResponse(
        HttpStatusCode.OK,
        new { String = "hello", AnInt = 42 },
        new JsonMediaTypeFormatter());

    Assert.Equal("application/json",
        response.Content.Headers.ContentType.MediaType);
}

The CreateResponse message is particularly useful in server-driven content negotiation
scenarios, where the request information—namely, the request Accept header—is
needed to decide the most appropriate media type:

[Fact]
public void CreateResponse_performs_content_negotiation()
{
    var request =
        new HttpRequestMessage(HttpMethod.Get,
            new Uri("http://www.example.net"));
    request.Headers.Accept.Add(
        new MediaTypeWithQualityHeaderValue("application/xml", 0.9));
    request.Headers.Accept.Add(
        new MediaTypeWithQualityHeaderValue("application/json", 1.0));
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    var response = request.CreateResponse(
        HttpStatusCode.OK,
        "resource representation",
        new HttpConfiguration());

    Assert.Equal("application/json",
        response.Content.Headers.ContentType.MediaType);
}

Notice how the used CreateResponse overload receives an HttpConfiguration with
the configured formatters.

Finally, you also have the option of producing message content by creating custom
HttpContent-derived classes. However, before we present this technique, it is useful to
understand how an HTTP message content length is computed.

Content length and streaming
In HTTP, there are three major ways to define the payload body length:

• Explicitly, by adding the Content-Length header field with the message length
• Implicitly, by using chunked transfer encoding
• Implicitly, by closing the connection after all the content is transmitted (applicable

only to response content)

The last option exists mainly for compatibility with HTTP 1.0 and should not be used,
since an abnormal termination of the connection will result in undetected content cor‐
ruption.

With chunked transfer encoding, the message body is divided in a series of chunks, each
with its own size definition. This allows streaming content, where the length informa‐
tion is not known beforehand, to be transmitted without buffering.

The first option is the simpler one, but it requires a priori knowledge of the content
length. For this purpose, the HttpContent class contains the following abstract method:

protected internal abstract bool TryComputeLength(out long length)

Each concrete content class must implement this method according to how the content
is represented. For instance, the ByteArrayContent class implementation always re‐
turns true, providing the underlying array length. On the other hand, the PushStream
Content class implementation returns false, since the contents are pushed dynamically
by the registered action. Notice that there is no way for the PushStreamContent class
to know how many bytes will be pushed by this action. Finally, the StreamContent class
implementation delegates this query to the underlying Stream, defined in the construc‐
tor: if this stream is seekable, then the TryComputeLength method uses the
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Stream.Length to compute the content length; otherwise, the TryComputeLength
method returns false.

There is also a close relationship between the TryComputeLength method and the long?
HttpContentHeaders.ContentLength property: when this property is not explicitly set,
its value will query the TryComputeLength method. This means that there is no need to
explicitly set the Content-Length header, except in scenarios where this information is
obtained by external methods. Notice also that HttpContentHeaders.ContentLength
is of type long?, allowing for the absence of value.

In Chapter 11, we will describe how this information is used by the hosting layer to
determine the best way to handle the response message content (namely, to decide if
buffering should be used or not).

Custom content classes
Now that we’ve seen how message content length is defined and what influences stream‐
ing, we will address the creation of custom content classes. The following code excerpt
shows the definition of the FileContent class: a custom HttpContent-derived class to
represent file contents:

public class FileContent : HttpContent
{
    private readonly Stream _stream;
    public FileContent(string path,
        string mediaType = "application/octet-stream")
    {
        _stream = new FileStream(path, FileMode.Open, FileAccess.Read);
        base.Headers.ContentType = new MediaTypeHeaderValue(mediaType);
    }
    protected override Task
        SerializeToStreamAsync(Stream stream, TransportContext context)
    {
        return _stream.CopyToAsync(stream);
    }
    protected override bool TryComputeLength(out long length)
    {
        if (!_stream.CanSeek)
        {
            length = 0;
            return false;
        }
        else
        {
            length = _stream.Length;
            return true;
        }
    }
    protected override void Dispose(bool disposing)
    {
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        _stream.Dispose();
    }
}

Creating a custom HttpContent class requires us to define the following two abstract
methods:

protected internal abstract bool TryComputeLength(out long length)
protected abstract Task SerializeToStreamAsync(
    Stream stream, TransportContext context);

As we saw in the last section, the first one—TryComputeLength—is used to try to obtain
the content length. In the FileContent implementation, this method uses the
Stream.CanSeek property to query if the file stream length can be computed. If so, it
uses the Stream.Length property to return the content length.

The second method, SerializeToStreamAsync, is responsible for writing the contents
to the passed-in Stream. This method can operate asynchronously, returning a Task
before the write is concluded. This returned Task should be signaled when the write
process is finally finished. This asynchronous ability is useful when the message contents
are provided by another asynchronous process (e.g., reading from the filesystem or from
an external system). For instance, the FileContent implementation takes advantage of
the CopyToAsync method, introduced in .NET 4.5, to start the asynchronous copy and
return a Task representing this operation.

Instead of deriving directly from HttpContent, you can take an alternative approach
and use the StreamContent and PushStreamContent classes, either as a base class or via
factory methods. The following class shows you how to build XML-based content
without requiring any buffering, by creating a PushStreamContent-derived class:

public class XmlContent : PushStreamContent
{
    public XmlContent(XElement xe)
        : base(PushStream(xe), "application/xml")
    {
    }

    private static Action<Stream,HttpContent,TransportContext>
        PushStream(XElement xe)
    {
        return (stream, content, ctx) =>
            {
                using (var writer = XmlWriter.Create(stream,
                    new XmlWriterSettings(){CloseOutput = true}))
                {
                    xe.WriteTo(writer);
                }
            };
    }
}
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Since the PushStreamContent constructor requires an Action<Stream, HttpContent,
TransportContext>, in the previous example we use a private static method to create
this action from the given XElement. Notice also the use of the XmlWriterSettings
parameter in order to close the given stream. Recall that, since the action is assumed to
be asynchronous, the close of the stream signals the conclusion of this process.

We can accomplish the same goal by using an extension method on XElement:

public static class XElementContentExtensions
{
    public static HttpContent ToHttpContent(this XElement xe)
    {
        return new PushStreamContent((stream, content, ctx) =>
            {
                using (var writer = XmlWriter.Create(stream,
                    new XmlWriterSettings(){CloseOutput = true}))
                {
                    xe.WriteTo(writer);
                }
            },"application/xml");
    }
}

Conclusion
In this chapter, our focus was on the new HTTP programming model, which was in‐
troduced in version 4.5 of the .NET Framework and is at the core of both Web API and
the new HttpClient class. As we’ve shown, this new model provides a more usable and
testable way of dealing with the core HTTP concepts of messages, headers, and content.
The following chapters build upon this knowledge to provide a deeper understanding
of Web API inner workings. Namely, Chapter 11 describes the interface between this
model and a lower HTTP stack, such as the one provided by ASP.NET.
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CHAPTER 11

Hosting

Web API meets its downstairs neighbors.

Chapter 4 divided the ASP.NET Web API processing architecture into three layers:
hosting, message handler pipeline, and controller handling. This chapter addresses in
greater detail the first of these layers.

The hosting layer is really a host adaptation layer, establishing the bridge between the
Web API processing architecture and one of the supported external hosting infrastruc‐
tures. In fact, Web API does not come with its own hosting mechanism. Instead, it aims
to be host independent and usable in multiple hosting scenarios.

In summary, the host adapter layer is responsible for the following tasks:

• Creating and initializing the message handler pipeline, encapsulated in an HttpServ
er instance.

• Receiving HTTP requests from the underlying hosting infrastructure, typically by
registering a callback function.

• Transforming HTTP requests from their native representation (e.g., ASP.NET’s
HttpRequest) into HttpRequestMessage instances.

• Pushing these instances into the message handler pipeline, effectively initiating the
Web API request processing.

• When a response is produced and returned, the hosting adapter transforms the
returned HttpResponseMessage instance into a response representation native to
the underlying infrastructure (e.g., ASP.NET’s HttpResponse) and delivers it to the
underlying hosting infrastructure.

In version 1.0, two hosting adapters were available: web hosting and self-hosting. The
former hosting option allows Web API to be used on top of the classic ASP.NET hosting
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infrastructure, supported by the IIS (Internet Information Services) server. The latter
hosting option—self-hosting—enables the use of Web API on any Windows process,
namely console applications and Windows services. These two hosting adapters are
available as independent NuGet packages: Microsoft.AspNet.WebApi.WebHost and
Microsoft.AspNet.WebApi.SelfHost. Version 2.0 of ASP.NET Web API introduces
the OWIN host adapter, available via the Microsoft.AspNet.WebApi.Owin package.
This new alternative allows the usage of any OWIN-compliant host.

Our aim in this chapter is to provide the knowledge required for fully using Web API
in these hosting scenarios. So, with that in mind, we will now take a deeper look into
these host adapters, with a focus on their internal behavior. We’ll also detail how new
hosting scenarios can be supported, by presenting a Azure Service Bus adapter, enabling
the secure exposure of a privately hosted Web API application into the public web, via
the Service Bus relay.

We end with the description of a special hosting option targeted at testing scenarios and
usually designated by in-memory hosting. By directly connecting an HttpClient in‐
stance to a Web API HttpServer instance, this hosting option allows for direct in-
memory HTTP communication between client and server.

By presenting the internal implementation structure, we provide the knowledge re‐
quired for the correct configuration and optimization of Web API hosting aspects, such
as message buffering. This chapter is also relevant for anyone trying to write a custom
host or extend an existing one.

Addressing the Web API hosting mechanisms implies dealing with several external
technologies, such as the classical ASP.NET pipeline, the WCF channel stack layer, or
the OWIN specification. Aiming to be self-contained, this chapter also contains short
introductions to these external technologies, focusing on the topics related to hosting.

Web Hosting
So-called web hosting uses the classic ASP.NET pipeline. In the following section, we
start by reviewing the relevant aspects of this pipeline. Then, we briefly describe the
ASP.NET routing infrastructure, used by both Web API and ASP.NET MVC. Finally,
we describe how Web API integrates these two elements.

The ASP.NET Infrastructure
As shown in Figure 11-1, the ASP.NET infrastructure is composed of three main ele‐
ments: applications, modules, and handlers.
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Figure 11-1. ASP.NET pipeline

Applications

In ASP.NET, the unit of deployment is the application, represented by the class HttpAp
plication. You can create a specific derived class for each application by defining a
custom global.asax file.

When a request is mapped to an application, the runtime creates or selects an HttpAp
plication instance to handle it. It also creates a context representing both the HTTP
request and response:

public sealed class HttpContext : IServiceProvider
{
    public HttpRequest Request { get {...} }
    public HttpResponse Response { get {...} }
    ...
}

The application then flows this context through a set of pipeline stages, represented by
HttpApplication member events. For instance, the HttpApplication.BeginRequest
event is triggered when a request begins its processing.

Modules

An application contains a set of registered module classes, implementing the IHttpMod
ule interface:
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public interface IHttpModule
{
    void Dispose();
    void Init(HttpApplication context);
}

When a new application object is constructed, it creates an instance for each one of these
module classes and calls the IHttpModule.Init method on those instances. Each mod‐
ule uses this call as an opportunity to attach itself to the pipeline events that it wants to
process. A module can be attached to more than one event and an event can have more
than one module attached.

These modules can then act as filters, processing both the HTTP request and response
as they flow through the event pipeline. These modules also have the ability to short-
circuit the request processing, immediately producing the response.

Handlers
After all the request events are triggered, the application selects a handler, represented
by the IHttpHandler or the IHttpAsyncHandler interfaces, and delegates the processing
of the request to it:

public interface IHttpHandler
{
    void ProcessRequest(HttpContext context);
    bool IsReusable { get; }
}
public interface IHttpAsyncHandler : IHttpHandler
{
    IAsyncResult BeginProcessRequest(HttpContext context,
        AsyncCallback cb, object extraData);
    void EndProcessRequest(IAsyncResult result);
}

When the handler processing ends, the context is then flowed back through the appli‐
cation pipeline, triggering the response events.

Handlers are endpoints on which the application ultimately delegates the request pro‐
cessing. They constitute the main integration point used by the multiple frameworks
based on the ASP.NET infrastructure, such as Web Forms, ASP.NET MVC, or Web API.

For instance, in the ASP.NET Web Forms Framework, the System.Web.UI.Page class
implements the IHttpHandler interface. This means that the class associated with
an .aspx file constitutes a handler, called by the application if the request URI matches
the .aspx filepath.

We make the handler selection by mapping the request URI to a file in the application’s
directory (e.g., an .aspx file) or by using the ASP.NET routing feature. The former tech‐
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1. Web Forms can also use routing via the RouteCollection.MapPageRoute method.

nique is used by ASP.NET Web Forms,1 while the latter is used by ASP.NET MVC. Web
API also uses the ASP.NET routing functionality, as described in the next section.

ASP.NET Routing
In the ASP.NET infrastructure, we commonly configure routing by adding routes to the
RouteTable.Routes static property, which holds a RouteCollection.

For instance, Example 11-1 shows the default mapping defined by the ASP.NET MVC
project template, typically present in the global.asax file.

Example 11-1. ASP.NET MVC default route configuration
    protected void Application_Start()
    {
        ...
        RegisterRoutes(RouteTable.Routes);
        ...
    }

    public static void RegisterRoutes(RouteCollection routes)
    {
        routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

        routes.MapRoute(
            "Default", // Route name
            "{controller}/{action}/{id}", // URL with parameters
            new { controller = "Home", action = "Index",
                                        id = UrlParameter.Optional }
        );
    }

The RouteTable.Routes static property defines a route collection, global to the appli‐
cation, where specific routes are added. The MapRoute method, used in Example 11-1
to add a route, isn’t a route collection instance method. Instead, it is an extension meth‐
od, introduced by ASP.NET MVC, that adds MVC-specific routes. As we will see, Web
API uses a similar approach.
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Figure 11-2. ASP.NET routing classes

Figure 11-2 shows some of the classes participating in the ASP.NET routing process.
The general route concept is defined by the abstract RouteBase class, containing the
GetRouteData instance method. This method checks if a request context, namely the
request URI, matches the route. If so, it returns a RouteData instance containing a
IRouteHandler, which is simply a handler factory. In addition, the RouteData also con‐
tains a set of extra values, produced by the matching process. For instance, an HTTP
request matched by the Default route of Example 11-1 will result in a RouteData
containing the controller and action route values.

The RouteBase class also contains the GetVirtualPath method, performing the inverse
lookup process: given a set of values, it returns a URI that would match the route and
produce those values.

The abstract RouteBase class is not associated with a specific route matching process,
leaving this characterization open for the concrete derived classes. One of those is the
Route class, which defines a concrete matching procedure, based on:

• A URI template defining the URI’s structure (e.g., "{controller}/{action}/
{id}")
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• A set of default values (e.g., new { controller = "Home", action = "Index",
id = UrlParameter.Optional })

• A set of additional constraints

The URI template defines both the structure that the URIs must have to be matched by
the route, and the placeholders used to extract the route data values from the URI’s path
segments.

On a request, the routing selection logic is performed by the UrlRoutingModule attached
to the PostResolveRequestCache pipeline event. With each request, this module
matches the current request against the routes in the global RouteTable.Routes col‐
lection. If there is a match, the associated HTTP handler is mapped to the current
request. As a consequence, at the end of the pipeline, the application delegates the re‐
quest processing to this handler. For instance, all the routes added by the MVC’s Map
Route extension method map to the special MvcHandler.

Web API Routing
The ASP.NET routing model and infrastructure is tied to the legacy ASP.NET model,
namely the representation of requests and responses via HttpContext instances. Al‐
though it uses similar routing concepts, Web API uses the new HTTP class model and
thus defines a new set of routing-related classes and interfaces, presented in Figure 11-3.
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Figure 11-3. Web API routing classes

IHttpRoute represents a Web API route, and has characteristics similar to the classic
ASP.NET Route class, including:

• A GetRouteData method that receives an HTTP request and the virtual path root
and returns an IHttpRouteData containing a value dictionary

• A GetVirtualPath method that receives a value dictionary and a request message,
and returns an IHttpVirtualPath with a URI

• A set of properties with the route template, the route defaults, and the constraints

An important distinction in Web API is the use of the new HTTP class model—specif‐
ically the HttpRequestMessage and HttpMessageHandler classes—instead of the old
ASP.NET classes, such as HttpRequest and IHttpHandler.
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Web API also defines a way of using the new routing classes on the classic ASP.NET
routing infrastructure, as described in Figure 11-4. This internal adaptation layer is used
when Web API is hosted on top of ASP.NET, and allows the simultaneous use of new
and old routes in the same HTTP application.

Figure 11-4. Web API routing adaptation classes

The HostedHttpRouteCollection class is an adapter, providing an ICollection<IHttp
Route> interface on top of the classic ASP.NET RouteCollection. When a new IHttp
Route is added to this collection, it wraps it into a special adapter Route (HttpWeb
Route) and adds it to the ASP.NET route collection.

This way, the global ASP.NET route collection can have both classic routes and adapters
for the new Web API routes.

Global Configuration
When hosting on ASP.NET, the Web API–specific configuration is defined on a single‐
ton HttpConfiguration object, accessible via the static GlobalConfiguration.Config
uration property. This singleton object is used as the parameter to the default route
configuration illustrated in Example 11-2.

Example 11-2. ASP.NET Web API default route configuration
// config equals GlobalConfiguration.Configuration
config.MapHttpAttributeRoutes();
config.Routes.MapHttpRoute(
    name: "DefaultApi",
    routeTemplate: "api/{controller}/{id}",
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    defaults: new { id = RouteParameter.Optional }
);

The Routes property on this singleton configuration references a HostedHttpRoute
Collection that wraps the global RouteTable.Routes collection, as shown in
Figure 11-5. This means that all the Web API routes added to GlobalConfigura
tion.Configuration.Routes will end up being added as classical ASP.NET routes into
the global RouteTable.Routes collection. As a consequence, when the UrlRoutingMod
ule tries to find a route match, these Web API routes will also be taken into consider‐
ation.

Figure 11-5. Web API global configuration

The routes added by an ASP.NET MVC configuration are associated with the MvcHan
dler class. This means that all the requests that match one of these routes will be dele‐
gated to this MvcHandler at the end of the pipeline. Then, this special handler performs
the MVC-specific request processing—that is, selecting the controller and calling the
mapped action.
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The scenario with Web API is rather similar: the routes added via GlobalConfigura
tion.Configuration.Routes are associated with the HttpControllerHandler that will
ultimately handle all the requests matched by one of these Web API routes.

Figure 11-6 illustrates this characteristic, showing the RouteTable.Routes collection
holding both MVC and Web API routes. However, note that the MVC routes are asso‐
ciated with MvcHandler, while the Web API routes are associated with HttpControl
lerHandler.

Figure 11-6. RouteTable.Routes containing both MVC and Web API routes

The Web API ASP.NET Handler
All ASP.NET requests that match a Web API route are handled by the new HttpCon
trollerHandler, as we’ve been detailing. When called on its BeginProcessRequest
method this handler performs the following actions:

• First, a singleton HttpServer instance is lazily created on the first handled request,
via GlobalConfiguration.Configuration. This server instance contains the mes‐
sage handler pipeline, including the controller dispatching handler.
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• Then, the ASP.NET HttpRequest message, present in the current HttpContext, is
translated into a new HttpRequestMessage instance.

• Finally, this HttpRequestMessage is pushed into the singleton HttpServer instance,
effectively starting the host-independent phase of the Web API processing, com‐
posed of the message handler pipeline and the controller layer.

The translation between the native ASP.NET message representation and the Web API
message representation is configured by a service object that implements the IHostBuf
ferPolicySelector interface. This interface has two methods, UseBufferedInput
Stream and UseBufferedOutputStream, that define whether the message body should
be buffered. The HttpControllerHandler requests this service object from the global
configuration and uses it to decide:

• If the HttpRequestMessage content uses the ASP.NET buffered or streamed request
input stream

• If the HttpResponseMessage content is written to a ASP.NET buffered output
stream

The web host policy registered by default always buffers the input stream. For the output
stream, it uses the following rules based on properties of the returned HttpResponse
Message:

• If the content length is known, then the Content-Length is explicitly set and no
chunking is used. The content is transmitted without buffering since its length was
already determined.

• If the content class is StreamContent, then chunked transfer encoding will be used
only if the underneath stream does not provide length information.

• If the content class is PushStreamContent, then chunked transfer encoding is used.
• Otherwise, the content is buffered before being transmitted to determine its length,

and no chunking is used.

The translation of the ASP.NET HttpRequest message into a new HttpRequestMes
sage instance does more than just including the request message information. A set of
contextual hosting information is also captured and inserted into the HttpRequestMes
sage.Properties dictionary. This information includes:

• The certificate used by the client, if the request was done on a SSL/TLS connection
with client authentication

• A Boolean property stating if the request was originated in the same machine
• An indication if the custom errors are enabled

262 | Chapter 11: Hosting



Note that this information does not originate from the request message. Instead, it is
provided by the hosting infrastructure and reflects contextual aspects, such as the con‐
nection characteristics. For intance, the client certificate information, added as a mes‐
sage property, can be publicly accessed via a GetClientCertificate extension method.
The remaining information is used privately by the Web API runtime.

Version 2.0 of the ASP.NET Web API introduces the concept of a request context as a
way to group all this contextual information. Instead of being dispersed by different
untyped request properties, the new HttpRequestContext class contains the following
set of properties to represent this information:

• The client certificate
• The virtual path root
• The request’s principal

The Web API ASP.NET handler creates a WebHostHttpRequestContext instance (Web
HostHttpRequestContext derives from HttpRequestContext) and fills it with the re‐
quest’s contextual information. Upper layers can then access this information via the
request’s GetRequestContext extension method.

Figure 11-7 visually summarizes the web hosting architecture, presenting the route
resolution process and the dispatch into the HttpServer instance. In conclusion:

• Web API can be hosted on top of the ASP.NET infrastructure and share the same
application with other frameworks, such as ASP.NET MVC or Web Forms.

• The ASP.NET routing infrastructure is used to identify the requests that are bound
to the Web API runtime. These requests are routed to a special handler that converts
the native HTTP representations into the new System.Net.Http model.

• We configure Web API at the start of the application, typically by adding code to
the Application_Start method within the global.asax.cs file, and use the Global
Configuration.HttpConfiguration singleton object.

• When using web hosting, we must define some configuration aspects on the un‐
derlying host, not on the common Web API configuration. An example is the con‐
figuration of secure connections, using SSL or TLS, which we can do using the IIS
Manager.
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Figure 11-7. ASP.NET hosting architecture

Self-Hosting
Web API also contains an adapter for self-hosting (i.e., hosting on any Windows process,
such as a console application or a Windows service). Example 11-3 shows the typical
code required for this type of hosting.

Example 11-3. Self-hosting
    var config = new HttpSelfHostConfiguration("http://localhost:8080");
    config.Routes.MapHttpRoute("default", "{controller}/{id}",
                                    new { id = RouteParameter.Optional });
    var server = new HttpSelfHostServer(config);
    server.OpenAsync().Wait();
    Console.WriteLine("Server is opened");
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    Console.ReadLine();
    server.CloseAsync().Wait();

Note that in this case, a server instance must be explicitly created, configured, and
opened. This contrasts with web hosting, where the supporting HttpServer instance is
implicitly and lazily created by the ASP.NET handler. Note also that Example 11-3 uses
specific classes for the self-hosting scenario. The HttpSelfHostServer class derives
from the general HttpServer class and is configured by an HttpSelfHostConfigura
tion, which itself derives from the general HttpConfiguration class. The hosting base
address is explicitly defined in the self-hosting configuration. Figure 11-8 shows the
relationship between these classes.

Figure 11-8. Self-host server and configuration classes

In version 1.0 of Web API, the HttpSelfHostServer internally uses the WCF (Windows
Communication Foundation) channel stack layer to obtain request messages from the
underlying HTTP infrastructure. The following section briefly presents the WCF high-
level architecture, setting the groundwork for the description of Web API self-hosting
characteristics.

WCF Architecture
The WCF architecture is divided into two layers: the channel stack layer and the service
model layer, as depicted in Figure 11-9.
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Figure 11-9. WCF architecture

The bottom channel stack layer is composed of a stack of channels and behaves similarly
to a classical network protocol stack. The channels are divided into two types: transport
channels and protocol channels. Protocol channels process the messages that flow up
and down through the stack. A typical use case for a protocol channel is the addition
of digital signatures at the sending side and the verification of those signatures at the
receiving side. Transport channels handle interfacing with the transport medium (e.g.,
TCP, MSMQ, HTTP), namely by receiving and sending messages. They use encoders to
convert between the transport medium byte streams and message instances.

The upper service model layer performs the interfacing between messages and method
calls, dealing with tasks such as:

• Transforming a received message into a parameter sequence
• Obtaining the service instance to use
• Selecting the method to call
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• Obtaining the thread at which to call the method

Figure 11-10. Binding, binding elements, and channels

The concrete channel stack layer organization is described by bindings, as shown in
Figure 11-10. A binding is an ordered collection of binding elements, where each ele‐
ment roughly describes one channel or encoder. The first binding element describes the
upper channel and the last element describes the lower channel, which is always a
transport channel.

The HttpSelfHostServer Class
The HttpSelfHostServer class implements a self-hosted Web API server. As presented
in Example 11-3, this server is configured by an instance of the HttpSelfHostConfigu
ration class, which derives from the more general HttpConfiguration and adds spe‐
cific configuration properties relevant for the self-host scenario.

Internally, the HttpSelfHostServer creates a WCF channel stack and uses it to listen
for HTTP requests. This channel stack is described by an instance of the new HttpBind
ing class, introduced by the Web API self-hosting support.

When starting the server, the HttpSelfHostserver.OpenAsync method creates an
HttpBinding instance and asks the HttpSelfHostConfiguration instance to configure
it. Then it uses this binding to asynchronously create the WCF channel stack. It also
creates a pump that repeatedly pulls messages from this channel stack, converts them
into HttpRequestMessage instances, and pushes these new requests into the message
handler pipeline.

Similar to what happens in the web hosting scenario, the created HttpRequestMes
sage is enriched with an HttpRequestContext instance, containing the set of properties
obtained from the hosting context. One of them is the client certificate, when TLS/SSL
is used with client-side authentication.
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This pump is also responsible for taking the returned HttpResponseMessage and writing
it into the channel stack. In terms of response streaming, the self-host behaves quite
differently from the web host. It statically uses either an explicit Content-Length header
or a chunked transfer encoding, based on the following HttpSelfHostConfiguration
option:

public TransferMode TransferMode {get; set;}

If TransferMode.Buffered is chosen, then the Content-Length is always explicitly set,
independently of what is returned by TryComputeLength or by the ContentLength
header property. Namely, if the length information is not provided by the HttpCon
tent instance, the host will buffer in memory all the content to determine the length,
and send it only afterward. On the other hand, if TransferMode.Streamed is chosen,
then the chunked transfer is always used, even if the content length is known.

The HttpSelfHostConfiguration Class
As we’ve stated, the HttpSelfHostConfiguration defined in the HttpSelfHostServ
er has the task of configuring the internally used HttpBinding, which in turn configures
the WCF message channel. As a consequence, the HttpSelfHostConfiguration class
contains a set of public properties, as in Example 11-4, that reflect this internal imple‐
mentation detail (i.e., are based on the WCF programming model). For instance, the
MaxReceivedMessageSize, also available in the popular WCF BasicHttpBinding class,
defines the maximum size of the received message. Another example is the X509Cer
tificateValidator property, based on a type from the System.IdentityModel as‐
sembly and used to configure the validation of the client certificates received on
SSL/TLS connections.

Example 11-4. HttpSelfHostConfiguration properties
public class HttpSelfHostConfiguration : HttpConfiguration
{
    public Uri BaseAddress {get;}
    public int MaxConcurrentRequests {get;set;}
    public TransferMode TransferMode {get;set;}
    public HostNameComparisonMode HostNameComparisonMode {get;set;}
    public int MaxBufferSize {get;set;}
    public long MaxReceivedMessageSize {get;set;}
    public TimeSpan ReceiveTimeout {get;set;}
    public TimeSpan SendTimeout {get;set}
    public UserNamePasswordValidator UserNamePasswordValidator {get;set;}
    public X509CertificateValidator X509CertificateValidator {get;set;}
    public HttpClientCredentialType ClientCredentialType {get;set;}

    // other members elided for clarity
}
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Another way to configure the internal self-host behavior is to create an HttpSelfHost
Configuration derived class and override the OnConfigureBinding method. This re‐
ceives the HttpBinding instance created internally by the HttpSelfHostServer and can
change the binding settings before they are used to configure the WCF channel stack.
Figure 11-11 shows the self-hosting architecture, specifically the use of the WCF channel
stack and the relation between the configuration and WCF binding.

Figure 11-11. Self-hosting architecture
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The Web API self-host’s reliance on WCF has both advantages and disadvantages. The
main advantage is the availability of most of the WCF HTTP binding capabilities, such
as message limiting, throttling, and timeouts. The major disadvantage is that this WCF
dependency is exposed on the HttpSelfhostConfiguration public interface, namely
on some of its properties.

Note the message pump that retrieves messages from the underlying channel stack and
converts them into HttpRequestMessage instances before pushing them into the
HttpServer.

URL Reservation and Access Control
When starting a self-hosted web server from a nonadministrator account, you’ll com‐
monly encounter the following error:

HTTP could not register URL http://+:8080/.
Your process does not have access rights to this namespace

Why does this happen and how can we solve it? The answer to these questions requires
a short introduction to the low-level HTTP handling architecture.

On Windows, a kernel-mode device driver, called HTTP.sys, listens for HTTP re‐
quests. Both IIS and the WCF self-hosting transport channel use this kernel-mode
driver, via the user mode HTTP Server API. Server applications use this API to regis‐
ter their interest in handling requests for a given URL namespace. For instance, running
Example 11-3 results in the registration of the http://+:8080 namespace by the self-
host application. The + in the hostname represents a strong wildcard, instructing
HTTP.SYS to consider requests originating from all network adapters. However, this
registration is subject to access control, and by default only a process with administrative
privileges is authorized to perform it. The aforementioned error occurs for this reason.

One solution would be to start the self-host application using an account with those
privileges. However, running a server with administrative rights is seldom a good idea.
A better solution is to grant the required permissions to the account under which the
application will run. We do this by reserving the URL namespace for that account, al‐
lowing the associated applications to register URLs in the reserved namespace. We can
make this reservation using the netsh command-line tool (which requires administra‐
tive privileges):

netsh http add urlacl url=http://+:8080/ user=domain\user

The domain\user value should be replaced by the identity under which the self-host
application will run. This identity can also be one of the Windows special accounts, such
as network service, which is typically used when HTTP servers are hosted inside
Windows services. In this case, domain\user can be replaced by network service or
local service.
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Hosting Web API with OWIN and Katana
At the beginning of the chapter, we learned that ASP.NET Web API is built in a manner
that is host-agnostic, and that characteristic makes it possible to run a Web API in either
a traditional ASP.NET and IIS host or a custom process (self-hosting). This enables new
opportunities for building and running Web APIs; it also surfaces some new challenges.
For example, in many cases, developers do not want to have to write a custom console
application or Windows service in order to self-host their Web API. Many developers
who have some experience with frameworks such as Node.js or Sinatra expect to be able
to host their application in a presupplied executable. Additionally, a Web API is generally
only one component of several in a modern web application. Other components include
server-side markup generation frameworks like ASP.NET MVC, static file servers, and
real-time messaging frameworks like SignalR. Additionally, an application can be made
up of many smaller components that focus on specific tasks such as authentication or
logging. While Web API currently provides for different hosting options, a Web API
host is not able to simultaneously host any of these other components, meaning that
each of the different technologies in a modern web application would require its own
host. In the web-hosted scenario, IIS and the ASP.NET request pipeline mask this con‐
straint, but it becomes much more apparent when self-hosting.

What we really need is an abstraction that enables many different types of components
to form a single web application and then allows the entire application to run on top of
a variety of servers and hosts, based on the unique requirements of the application and
deployment environment.

OWIN
The Open Web Interface for .NET (OWIN) is a standard created by the open source
community that defines how servers and application components interact. The goal of
this effort is to change how .NET web applications are built—from applications as ex‐
tensions of large, monolithic frameworks to loosely coupled compositions of small
modules.

To accomplish this goal, OWIN reduces interactions between server and application
components to the following simple interface, known as the application delegate or app
func.:

Func<IDictionary<string, object>, Task>

This interface is the only requirement for an OWIN-compatible server or module (also
known as middleware). Additionally, because the application delegate consists of a small
number of .NET types, OWIN applications are inherently more likely to be portable to
different framework versions and even different platforms, such as the Mono project.
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The application delegate defines an interaction whereby a component receives all state
—including server, application, and request state—via a dictionary object known as the
environment or environment dictionary. As an OWIN-based application is assumed to
be asynchronous, the application delegate returns a Task instance after performing work
and modifying the environment dictionary. OWIN itself defines several of the keys and
values that may or must exist in the environment dictionary, as shown in Table 11-1.
Additionally, any OWIN server or host can supply its own entries in the environment
dictionary, and these can be used by any other middleware.

Table 11-1. Environment entries for request data
Required Key name Value description

Yes "owin.RequestBody" A Stream with the request body, if any. Stream.Null may be used as
a placeholder if there is no request body.

Yes "owin.RequestHeaders" An IDictionary<string, string[]> of request headers.

Yes "owin.RequestMethod" A string containing the HTTP request method of the request (e.g.,
"GET", "POST").

Yes "owin.RequestPath" A string containing the request path. The path must be relative to the
“root” of the application delegate.

Yes "owin.RequestPathBase" A string containing the portion of the request path corresponding to the
“root” of the application delegate.

Yes "owin.RequestProtocol" A string containing the protocol name and version (e.g., "HTTP/
1.0" or "HTTP/1.1").

Yes "owin.RequestQueryString" A string containing the query string component of the HTTP request URI,
without the leading “?” (e.g., "foo=bar&baz=quux"). The value may
be an empty string.

Yes "owin.RequestScheme" A string containing the URI scheme used for the request (e.g., "http",
"https"); see URI Scheme.

In addition to prescribing server and application interactions to the application delegate
and environment dictionary, OWIN also provides guidance for host and server imple‐
mentors related to subjects such as processing URIs and HTTP headers, application
startup, and error handling. The simplicity of the application delegate combined with
the flexibility of the loosely typed environment dictionary makes it easy for smaller,
more focused components to be developed and assembled by a developer into a single
application pipeline. As will be covered more in Chapter 15, several examples of these
more focused components are already being incorporated in the next release of
ASP.NET.

The complete OWIN specification is listed online.
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2. In addition to Microsoft’s Katana components, many popular open source web frameworks, such as NancyFX,
FUBU, ServiceStack, and others, can also be run in an OWIN pipeline.

The Katana Project
Whereas OWIN is the specification for defining how servers and application compo‐
nents interact to process web requests, the Katana project is a collection of OWIN-
compatible components that are created by Microsoft and distributed as open source
software.2 Katana project components are organized by architecture layer, as illustrated
in Figure 11-12. The HTTP data flow through the different layers and components is
illustrated in Figure 11-13.

Figure 11-12. Katana component architecture with example components

Katana components are divided into one of three layers: hosts, servers, and middleware.
The responsibility for each type of component is as follows:
Host

Hosts start and manage processes. A host is responsible for launching a process and
initiating the startup sequence put forward in section 4 of the OWIN specification.

Server
Servers listen for HTTP requests, ensure that values are correctly placed in the
environment dictionary, and call the application delegate for the first middleware
in a pipeline of middleware components.

Middleware
Middleware are components that perform any number of different tasks on a re‐
quest or response. They can be scoped to small tasks, such as implementing com‐
pression or enforcing HTTPS, or can function as adapters to an entire framework,
such as ASP.NET Web API. Components are arranged in a pipeline structure, where
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each component has a reference to the next component in the pipeline. The host
has the responsibility of constructing this pipeline during its startup sequence.

Figure 11-13. HTTP data flow through an ASP.NET Web API application running on
an OWIN pipeline and Katana host

In a conventional, framework-based approach to running web applications, the host,
server, and framework start independently of the application and then call into the
application at designated points. In this model, a developer’s code is effectively extending
the underlying framework, and as a result, the level of control over the request pro‐
cessing that application code will be determined by the framework. Additionally, it
means that the application will pay a performance penalty for features of the framework
that it does not use, but are run as a part of the framework itself.

In an OWIN-based web application, the startup sequence is reversed. After the host has
initialized an environment dictionary and selected a server, it immediately discovers
and calls into the developer’s application code to determine what components should
be composed together in the OWIN pipeline. By default, Katana hosts discover a de‐
veloper’s startup code based on the following rules:

• Look up or find a startup class (in order of precedence).
• If present, use the appSettings value for key owin:AppStartup.
• If present, use the type defined in the assembly-level attribute OwinStartupAttri
bute.

• Scan all assemblies looking for a type named Startup.
• If a startup class is found, find and call a configuration method matching the sig‐

nature void Configuration(IAppBuilder app).
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Following this default discovery logic, we simply need to add the following startup class
definition to our project in order for the Katana host’s loader to find and run it:

public class Startup
{
    public void Configuration(IAppBuilder app)
    {
        app.Use(typeof(MyMiddleware));
    }
}

Within the startup class’s configuration method, we can construct the OWIN pipeline
by calling the Use method of the supplied IAppBuilder object. The Use method is in‐
tended to be a generic means for allowing any component that implements the appli‐
cation delegate to be configured in the pipeline. Additionally, many middleware com‐
ponents and frameworks provide their own extension methods for simplifying pipeline
configuration. For example, ASP.NET Web API provides the UseWebApi extension
method, which enables the configuration code as follows:

var config = new HttpConfiguration();

// configure Web API
// ...

app.UseWebApi(config);

But what actually happens when you use Web API’s configuration extension method?
Going deeper into the Web API configuration method and the Web API middleware
component will help you to better understand both the OWIN pipeline and Katana
implementation, as well as the decoupled nature of Web API’s host adapter design.

Web API Configuration
When the UseWebApi method is called from within a user’s startup class, the method,
which is found in the System.Web.Http.Owin assembly’s WebApiAppBuilderExten
sions class, constructs an instance of the HttpMessageHandlerAdapter class—the
OWIN middleware component for Web API—and adds it to the IAppBuilder instance
using the generic Use method. Looking at the UseWebApi method reveals more about
how the Katana infrastructure binds middleware together to form the complete pipeline:

public static IAppBuilder UseWebApi(
    this IAppBuilder builder,
    HttpConfiguration configuration)
{
    IHostBufferPolicySelector bufferPolicySelector =
        configuration.Services.GetHostBufferPolicySelector()
            ?? _defaultBufferPolicySelector;

    return builder.Use(typeof(HttpMessageHandlerAdapter),
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3. Details surrounding Web API’s dispatching logic, including HttpServer and HttpMessageHandler, will be
discussed at length in Chapter 12.

        new HttpServer(configuration), bufferPolicySelector);
}

The generic Use method takes the type of the Web API middleware as its first parameter,
followed by an arbitrary array of additional parameters. In the case of the Web API
middleware, we can see that there are two additional parameters: an HttpServer in‐
stance, which is configured with the supplied HttpConfiguration object, and an object
that instructs the middleware on how to handle request and response streaming. The
middleware itself is passed to Use as a type rather than an instance so that the infra‐
structure can, as a part of creating the middleware instance, configure it (via the mid‐
dleware’s constructor) with a reference to the next middleware object in the pipeline.
We can see this in action by examining the HttpMessageHandlerAdapter constructor:
the next reference is supplied as the first parameter and is then followed by the addi‐
tional parameters that were passed to the generic Use method:3

public HttpMessageHandlerAdapter(OwinMiddleware next,
    HttpMessageHandler messageHandler,
    IHostBufferPolicySelector bufferPolicySelector) : base(next)

The output of the generic Use method is the modified IAppBuilder object, and therefore
the extension method simply returns that object. Returning the IAppBuilder in this
way enables us to use a fluid syntax when composing the OWIN pipeline in our startup
class.

Web API Middleware
Once the Web API middleware has been added to the OWIN pipeline, an OWIN server
can call the middleware’s application delegate for HTTP requests. Recall the signature
for the OWIN application delegate:

Func<IDictionary<string, object>, Task>

Web API’s HttpMessageHandlerAdapter class exposes this function indirectly via its
base class, OwinMiddleware, which is provided by the Microsoft.Owin NuGet package.
This base class supplies the server with the application delegate function and then ex‐
poses a simpler API to its descendants:

public async override Task Invoke(IOwinContext context)

The context object provides a more strongly typed object model for accessing members
of the environment dictionary like the HTTP request and response objects. The current
list of accessors provided by IOwinContext is summarized in Table 11-2.
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Table 11-2. Property accessors for IOwinContext
Request A wrapper around the current request

Response A wrapper around the current response

Environment The wrapped OWIN environment dictionary

Authentication (.NET 4.5 and higher) Accesses the authentication middleware functionality available for the current request

Each property in the context object provides strongly typed access to different members
of the environment dictionary. To inspect each of the different wrapper types, see the
Microsoft.Owin source.

As a request flows through the OWIN pipeline, when it reaches the HttpMessageHand
lerAdapter Invoke method, it is processed according to the data flow illustrated in
Figure 11-14.
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Figure 11-14. Web API middleware data flow

Because the HttpMessageHandlerAdapter’s primary responsibility is to serve as a bridge
between the OWIN pipeline and the Web API programming model, the first action that
it performs is to convert the objects found in the OWIN environment dictionary into
the fundamental types used by Web API. Not surprisingly, these are HttpRequestMes
sage and HttpResponseMessage. Prior to sending the HTTP request to Web API for
processing, the middleware also extracts the user object, if it exists, from the environ‐
ment dictionary (via IOwinContext.Request.User) and assigns it to the active thread’s
CurrentPrincipal property.
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Once the middleware has an HttpRequestMessage representation of the request, it can
invoke Web API in a manner similar to the previously described Web API hosting
infrastructure components. As is discussed in Chapter 12, the HttpServer type is de‐
rived from HttpMessageHandler and acts as the entry point into the Web API message
handler pipeline (there is also an extension method overload that enables the developer
to specify an additional HttpMessageHandler object known as the dispatcher, which is
the last node in the message handler pipeline). Because an HttpMessageHandler cannot
be invoked directly, the middleware wraps it in an HttpMessageInvoker object and then
calls it with the following:

response = await _messageInvoker.SendAsync(request, owinRequest.CallCancelled);

This initiates processing of the HttpRequestMessage through Web API’s message han‐
dler pipeline and controller pipeline and sets a reference to the resultant HttpRespon
seMessage on a local variable. The message handler and controller pipelines are dis‐
cussed at length in Chapter 12.

One additional responsibility of the Web API middleware component is determining
what to do with an HTTP 404 Not Found status code on the HttpResponseMessage.
This is important because in the context of the larger OWIN pipeline, this status code
can mean one of two things:

• The request did not match any of the HttpRoutes that were specified in the
HttpConfiguration object. In this case, the middleware should invoke the appli‐
cation delegate on its next middleware component.

• The application developer explicitly returned this status code as a part of the ap‐
plication’s protocol implementation (e.g., for request GET /api/widgets/123, item
123 cannot be found in the widgets data store). In this case, the middleware should
not invoke the next middleware component in the chain, but instead return the 404
response to the client.

In Web API middleware terms, a 404 response code that is set by Web API’s route
matching logic is called a “soft not found,” and it is identified by the presence of an
additional setting—HttpPropertyKeys.NoRouteMatched—in the response message’s
properties collection. A 404 response code without this setting will be assumed to be a
“hard not found” and will result in an immediate 404 HTTP response to the client.

The OWIN Ecosystem
The full set of Katana components is broader than what has been discussed in this
chapter. The most recent release of the Katana components includes components for
authentication, including middleware for both social and enterprise providers, diag‐
nostics middleware, the HttpListener server, and the OwinHost.exe host. OWIN-
based authentication components will be covered in greater detail in Chapter 15. Over
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time, the list of OWIN-compatible components from Microsoft will continue to grow
to include many of the common features currently in System.Web.dll. Additionally,
the ecosystem of third-party components created by the community continues to grow,
and at present includes many different HTTP frameworks and middleware components.
We should expect to see the OWIN component space grow significantly over the next
several years.

In-Memory Hosting
An additional Web API hosting option, mainly aimed at testing scenarios, is based on
the direct connection between an HttpClient instance and an HttpServer instance. It
is commonly designated by in-memory hosting.

As described in Chapter 14, an HttpClient instance can be configured by an HttpMes
sageHandler passed in the constructor. The client then uses this handler to asynchro‐
nously obtain the HTTP request from the HTTP request. Typically, this handler is either
an HttpClientHandler that uses an underlying network infrastructure to send and
receive HTTP messages, or a DelegatingHandler that performs pre- and post-
processing on the request and response, respectively.

However, the HttpServer class also extends from the HttpMessageHandler, meaning
that you can use it when constructing an HttpClient. This results in the direct in-
memory communication between the client and the server, without any network stack
overhead, which is useful in testing scenarios. Example 11-5 shows how to use this
capability.

Example 11-5. In-memory hosting
    var config = new HttpConfiguration();
    config.Routes.MapHttpRoute("default", "{controller}/{id}",
                                    new { id = RouteParameter.Optional });
    var server = new HttpServer(config);
    var client = new HttpClient(server);
    var c = client.GetAsync("http://can.be.anything/resource").Result
        .Content.ReadAsStringAsync().Result;

The can.be.anything hostname in Example 11-5 means exactly that: since no network
layer is used, the URI’s hostname part is ignored and therefore can be anything.

It is the symmetry between HttpClient and HttpServer—one is a message handler and
the other receives a message handler—that allows the direct connection of the client to
the server, as shown in Figure 11-15.
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Figure 11-15. In-memory hosting diagram

Azure Service Bus Host
Finally, before we end this chapter, we are going to exemplify the development of a
custom hosting adapter. As a motivator, we will use the Windows Azure Service Bus,
which is a cloud-hosted infrastructure providing both brokered and relayed messaging
capabilities. Brokered messaging includes mechanisms such as queues and topics, pro‐
viding both temporal decoupling and message multicast between senders and receivers.
Relayed messaging, which is the main topic in this section, allows the public exposure
of APIs hosted on private networks.

Consider Figure 11-16, where an API (i.e., a set of resources) is hosted on a machine
with the following characteristics:

• Located in a private network, without owning any public IP or a public DNS name
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• Separated from the Internet by both NAT (network address translation) and firewall
systems.

Figure 11-16. Service Bus usage scenario

A concrete example of such a setting is a home automation system providing a Web
API. In a typical residential scenario, the Internet access (e.g., via DSL) has the charac‐
teristics depicted in Figure 11-16—that is, no public IP address or DNS name, and NAT
and firewalls blocking inbound connections. However, it would be useful if this API
could be consumed by external clients, located on the Internet. Consider, for instance,
a scenario where a smartphone is used to remotely control the room temperature or
view surveillance images.

As shown in Figure 11-16, the Service Bus relay feature solves these connectivity prob‐
lems by acting as an intermediary between the client and the API host:

• First, the host establishes an outbound connection to the Service Bus relay. Since it
is an outbound connection, not inbound, no public IP is required internally; the
translation is performed by the NAT.

• As a consequence of this connection, the Service Bus relay creates and exposes a
public endpoint using a domain name in its namespace (e.g., webapibook.serv
icebus.windows.net).

• Every request sent to this public endpoint is then relayed to the API host via the
opened outbound connection. The responses produced by the API host are also
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returned via this outbound connection and delivered to the client by the Service
Bus relay.

The Azure Service Bus is multitenant, and each tenant owns a DNS name with the
structure {tenant-namespace}.servicebus.windows.net. For instance, the example
in this section uses the name webapibook.servicebus.windows.net. When a host es‐
tablishes the connection with the service bus, instructing the relay to start listening for
requests, it must authenticate itself—that is, prove that it is allowed to use the tenant’s
name. Also, the host must define a prefix path, which is combined with the tenant’s DNS
name to form the base address. Only requests with this prefix are forwarded to the host
by the relay.

The Azure Service Bus provides a SDK (software development kit) that integrates into
the WCF programming model and provides special bindings for hosting services via
the Service Bus relay. Unfortunately, at the time of this writing, it does not contain any
support for the ASP.NET Web API. However, based on the hosting independence ca‐
pabilities of Web API and inspired by the WCF-based self-host, we can build the custom
HttpServiceBusServer class that uses the Service Bus relay to host ASP.NET Web API.

Figure 11-17 shows the HttpServiceBusServer host server and associated classes.

Figure 11-17. The HttpServiceBusServer and related classes

This new server is configured by an instance of the HttpServiceBusConfiguration
class, which derives from the base HttpConfiguration, and adds the following prop‐
erties specific to this hosting scenario:
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• The public Service Bus relay address (e.g., https://tenant-
namespace.servicebus.windows.net/some/path)

• The credentials required to establish the outbound connection to the Service Bus
relay

This design, on which a specific configuration class derives from the base HttpConfi
guration, is similar to the one used by the self-host and presented in Figure 11-8. In‐
ternally, the HttpServiceBusServer creates a WCF WebServiceHost, and adds an end‐
point configured by the WebHttpRelayBinding, which is one of the new bindings in the
Service Bus SDK. This new binding is similar to the WCF native WebHttpBinding, with
the major difference that the service is exposed remotely on the Service Bus relay, instead
of on the local hosting machine. All the requests received through this endpoint are
handled by an instance of the DispatcherService class:

[ServiceContract]
[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single,
                        ConcurrencyMode = ConcurrencyMode.Multiple)]
internal class DispatcherService
    [WebGet(UriTemplate = "*")]
    [OperationContract(AsyncPattern = true)]
    public async Task<Message> GetAsync()
    {...}

    [WebInvoke(UriTemplate = "*", Method = "*")]
    [OperationContract(AsyncPattern = true)]
    public async Task<Message> InvokeAsync(Message msg)
    {...}
}

This generic service implements two operations asynchronously: Get and Invoke. The
Get operation handles all the HTTP requests with the GET method. The Invoke opera‐
tion handles all the other request methods (Method = "*"). Notice that both operations
have UriTemplate = "*", meaning that they both handle requests for any path.

When a request is received by any of these two methods, the native message represen‐
tation is transformed into a new HttpRequestMessage instance. This new instance is
then pushed into an inner HttpServer, created in the HttpServiceBusServer con‐
structor and configured by the passed HttpServiceBusConfiguration. Unfortunately,
the HttpServer.SendAsync method cannot be called directly, since it is protected.
However, the HttpMessageInvoker can wrap any message handler, namely the
HttpServer, and expose a public SendAsync method:

public DispatcherService(HttpServer server, HttpServiceBusConfiguration config)
{
    _serverInvoker = new HttpMessageInvoker(server, false);
    _config = config;
}
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When the HttpServer produces the HttpResponseMessage, the DispatcherService
converts it back to the WCF message representation and returns it.

The overall design is inspired by the WCF-based self-host adapter. There are, however,
two differences. The first and most important is that the Service Bus host sits on top of
the WCF Service Model, while the self-host uses the WCF channel stack directly. This
choice, which introduces additional overhead, was adopted because it results in a sim‐
pler implementation.

The second difference is that HttpServiceBusServer does not derive from HttpServ
er. Instead of using an inheritance-based design, like the one chosen by the HttpSelf
HostServer, the HttpServiceBusServer uses a compositional approach: an HttpServ
er instance is created and used internally.

The HttpServiceBusServer is available in the source code. The source code repository
also includes an example showing the simplicity of using this new Web API host. The
ServiceBusRelayHost.Demo.Screen project defines a Service Bus hosted service, con‐
taining only one resource:

public class ScreenController : ApiController
{
    public HttpResponseMessage Get()
    {
        var content = new StreamContent(ScreenCapturer.GetEncodedByteStream());
        content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg");
        return new HttpResponseMessage()
        {
            Content = content
        };
    }
}

where ScreenCapturer is an auxiliary class for capturing the desktop screen. The host‐
ing of this resource controller is also straightforward:

var config = new HttpServiceBusConfiguration(
    ServiceBusCredentials.ServiceBusAddress)
{
    IssuerName = "owner",
    IssuerSecret = ServiceBusCredentials.Secret
};
config.Routes.MapHttpRoute(
    "default",
    "{controller}/{id}",
    new { id = RouteParameter.Optional });
var server = new HttpServiceBusServer(config);
server.OpenAsync().Wait();
...
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First, an HttpServiceBusConfiguration instance is initialized with the Service Bus
address, access credentials (IssuerSecret), and access username ("owner"). Then, the
routes are added to the Routes property, just as in any other hosting scenario. Finally,
an HttpServiceBusServer is configured with this configuration instance and then ex‐
plicitly opened.

Figure 11-18 shows the result of accessing the screen resource, hosted via Azure Service
Bus, through a plain old browser. Notice the use of a public DNS name in the browser’s
address bar.

Figure 11-18. Accessing the screen resource hosted via Service Bus

Conclusion
This chapter focused on the way Web API interfaces with external hosting infrastruc‐
tures. It described not only the originally available host adapters, web host and self-host,
but also the new hosting options based on the OWIN specification and the Katana
project. Finally, it also presented in-memory hosting and an example of a custom hosting
adapter. In the following chapters, our focus will change to the upper layers of ASP.NET
Web API, in particular routing and controllers.
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CHAPTER 12

Controllers and Routing

Knowing how home plumbing works is unnecessary much of the time—but when you need
to know it, you really need to know it.

While ASP.NET Web API provides a litany of helpful high-level features ranging from
serialization and model binding to support for OData-style queries, the core job of all
Web APIs, and ASP.NET Web API as a result, is to process HTTP requests and provide
appropriate responses. Therefore, it is critical to understand the core mechanics of how
an HTTP request flows from a client through the various elements of the ASP.NET Web
API infrastructure and programming model, ultimately resulting in an HTTP response
that can be sent back to the client.

This chapter focuses on that message flow, exploring the fundamental mechanics and
supporting the programming model behind request handling and response generation.
In addition, this chapter will look at the key types and insertion points that enable the
framework to be extended to support custom message flow and processing schemes.

HTTP Message Flow Overview
The precise message flow through ASP.NET Web API will vary somewhat depending
on the choice of host, and hosting is discussed in much greater detail in Chapter 10.
However, at a high level, the framework components that participate in the HTTP mes‐
sage flow fall into two categories (as illustrated in Figure 12-1):

• Components that rely only on the HTTP message for context
• Components that rely on the higher-level programming model for context

The components that rely only on the core HTTP message context form the lower-level
“message handler” pipeline. These components receive an HttpRequestMessage object
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from the hosting abstraction and are ultimately responsible for returning an HttpRes
ponseMessage object.

By contrast, components that rely on the higher-level programming model have visi‐
bility into and are able to take advantage of programming framework abstractions, such
as the controller and action methods as well as the parameters that map to the various
elements of the HTTP request.

Figure 12-1. The message handler and controller pipelines

As mentioned, the low-level mechanics for activities such as selecting URL routes varies
depending on the host. For example, when a Web API is hosted as part of an MVC
application hosted on IIS, an HTTP message flows through the core routing infrastruc‐
ture provided by ASP.NET. Conversely, when a Web API is self-hosted, the message
flows through a WCF channel stack built around an HttpListener object. Regardless
of the selected hosting option, a request will ultimately be converted to an instance of
HttpRequestMessage and will be passed to an instance of HttpServer.

The Message Handler Pipeline
HttpServer is the entry point into the message handler pipeline for host-specific com‐
ponents. It initializes the pipeline from the handlers supplied by both global and route
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configuration data using the HttpClientFactory’s CreatePipeline method, as shown
in Example 12-1.

Example 12-1. Initializing the MessageHandler pipeline
protected virtual void Initialize()
{
    // Do final initialization of the configuration.
    // It is considered immutable from this point forward.
    _configuration.Initializer(_configuration);

    // Create pipeline
    InnerHandler = HttpClientFactory.CreatePipeline(_dispatcher,
        _configuration.MessageHandlers);
}

Finally, because HttpServer itself derives from the DelegatingHandler class, it acts as
the first handler in a message handler pipeline. The complete pipeline consists of
HttpServer followed by any number of custom DelegatingHandler objects that you
register with HttpConfiguration; followed by another special handler called HttpRou
tingDispatcher; and finally, either a custom route-specific message handler (or an‐
other message handler pipeline built up with HttpClientFactory.CreatePipeline)
supplied during route registration, or the default HttpControllerDispatcher message
handler. HttpControllerDispatcher selects, creates, and dispatches the message to a
controller instance. The pipeline is illustrated in Figure 12-2.

Figure 12-2. The MessageHandler Pipeline

HttpServer establishes itself as the first node in the pipeline by setting the value returned
from HttpClientFactory.CreatePipeline to its own InnerHandler property. This
enables HttpServer to pass control to the next handler in the pipeline by calling the
SendAsync method on its base class. This approach is consistent with all message han‐
dlers in the pipeline:

return base.SendAsync(request, cancellationToken)

The DelegatingHandler base class simply calls SendAsync on the object’s InnerHan
dler value. The inner handler processes the message in its SendAsync method and then
repeats the process by calling SendAsync on its own InnerHandler. This process of
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1. This pipeline style can be contrasted with a style whereby the pipeline is external to its components and data
flows as the result of the pipeline calling a component, obtaining its response, calling the next component,
and so on.

calling the inner handler’s SendAsync method continues until the innermost handler is
reached—which, in the case of a typical ASP.NET Web API, is the handler that dispatches
the request to a controller instance. This style of pipeline, depicted in Figure 12-3, is
sometimes referred to as a “Russian doll” because handlers are layered within one an‐
other, and request data flows from the outermost handler to the innermost handler (and
then vice versa for response data) as a result of the outer handler directly calling its inner
handler.1

Figure 12-3. The MessageHandler “Russian doll” model

Keep in mind that this entire data flow is asynchronous and therefore the value returned
from SendAsync is a Task. In fact, its complete signature is as follows:

Task<HttpResponseMessage> SendAsync(HttpRequestMessage request,
    CancellationToken cancellationToken)

Participating in a task-based async pipeline can take some getting used to, and that topic
is discussed in much more depth in Chapter 10. However, some basic guidelines are as
follows for creating a task-based message handler.

• To pass control on to the next, or inner, handler in the pipeline, simply return the
value of calling SendAsync on the base class.
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• To stop all further processing of the message and return a response (also known as
“short-circuiting” the request processing), return a new Task<HttpResponseMes
sage>.

• To process the HTTP response as it flows back from the innermost handler to the
outermost handler, append a continuation (implemented with the ContinueWith
method) to the returned task. The continuation should take a single parameter to
hold the task that is being continued and should return an HttpResponseMessage
object. With version 4.5 and later of the .NET Framework, you can simplify working
with asynchronous code using the async and await keywords.

As an example, consider the message handler shown in Example 12-2, which examines
an HTTP GET request and determines whether the request is a conditional GET request
(that is, a request that contains an if-none-match header). If the request is a conditional
request, and the entity tag (ETag) contained in the request cannot be found in a local
cache, this indicates to the handler that the value of the underlying resource state has
changed. Therefore, the handler lets the request continue to flow through the pipeline
and to the appropriate controller by calling and returning the value of
base.SendAsync. This will ensure that the response to this GET request will contain the
most up-to-date representation of the resource.

Example 12-2. MessageHandler for processing conditional GET requests with ETags
protected override Task<HttpResponseMessage> SendAsync(
    HttpRequestMessage request,
    CancellationToken cancellationToken)
{
    if (request.Method == HttpMethod.Get &&
        request.Headers.IfNoneMatch.Count > 0 &&
        (!IfNoneMatchContainsStoredEtagValue(request)))

        return base.SendAsync(request, cancellationToken).ContinueWith(task => {
            var resp = task.Result;
            resp.Headers.ETag = new EntityTagHeaderValue(
                _eTagStore.Fetch(request.RequestUri));
            return resp;
        });
    }

    ...

    //by default, let the request keep moving through the message handler pipeline
    return base.SendAsync(request, cancellationToken);
}

The handler also adds a continuation to the returned task so that it can create and apply
a new ETag value to the response message. This new ETag value can then be passed and
validated for future requests to the resource.
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Invoking a MessageHandler with HttpMessageInvoker
If you’ve spent any time with message handlers, you may already know that the
SendAsync method is a protected internal method, which may prompt you to ask how
HttpServer, which is itself derived from DelegatingHandler, can be called from an
outside type—that is, by the types that make up underlying hosting infrastructure.

For the task of calling into the SendAsync method, classes can take advantage of the
HttpMessageInvoker class, which is provided by the System.Net.Http assembly (the
same assembly that contains the base class for DelegatingHandler, HttpMessageHan
dler).

Because HttpMessageInvoker and HttpMessageHandler are in the same assembly, and
because SendAsync is protected internal, meaning it can be called from within a type
that is either derived from HttpMessageHandler or is in the same assembly, HttpMessa
geInvoker can call the SendAsync method. Therefore, to execute a message handler,
simply construct a new HttpMessageInvoker and call its public SendAsync method as
follows:

var handler = new MyHandler();
var invoker = new HttpMessageInvoker(handler);

Task responseTask = invoker.SendAsync(request, cancellationToken);

Dispatcher
The final stage of the message handler pipeline is the dispatching stage. In earlier ver‐
sions of ASP.NET Web API, this stage was predefined to select a controller from the
information supplied by the route data, get an instance of the controller, and then pass
the HTTP message and context to the controller for processing by the controller’s ex‐
ecution logic. You could still circumvent the controller programming model by simply
adding a custom message handler that returned a new Task object. However, that mes‐
sage handler needed to be added in the global HttpConfiguration object, meaning that
it needed to process every HTTP request sent to the Web API.

To enable message handlers to be configured on a per-route basis, as well as to enable
different Web API frameworks that may use a different higher-level abstraction than
IHttpController, the team added a level of indirection to the dispatching process.
HttpServer composes an instance of HttpRoutingDispatcher as the last node in the
message handler pipeline. As the following excerpt from the product source code il‐
lustrates, HttpRoutingDispatcher is responsible for invoking either a custom message
handler supplied by the route or, alternately, the default HttpControllerDispatcher.
Because the dispatcher derives from HttpMessageHandler, which cannot be directly
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invoked, the HttpRoutingDispatcher code wraps the instance in an HttpMessageIn
voker object so that it can be executed:

var invoker = (routeData.Route == null || routeData.Route.Handler == null) ?
    _defaultInvoker : new HttpMessageInvoker(routeData.Route.Handler,
        disposeHandler: false);
return invoker.SendAsync(request, cancellationToken);

Route-specific message handlers are declared as a part of the route configuration itself.
For example, consider the following route registration code:

public static void Register(HttpConfiguration config)
{
    config.Routes.MapHttpRoute("customHandler", "custom/{controller}/{id}",
        defaults: new {id = RouteParameter.Optional},
        constraints: null,
        handler: HttpClientFactory.CreatePipeline(
                    new HttpControllerDispatcher(config),
            new[] {new MyHandler()})
    );

    ...
}

In addition to the standard route configuration and registration code, the customHan
dler route provides a custom message handler as the last parameter to MapHttpRoute.
However, the code actually does more than simply register an instance of the custom
MyHandler message handler. It uses the HttpClientFactory.CreatePipeline helper
method to compose MyHandler with the default HttpControllerDispatcher message
handler. This is an important point to keep in mind when you’re inserting route-specific
message handlers. If a custom message handler is supplied to HttpRoutingDispatch
er, that message handler becomes responsible for any and all further processing of the
HTTP message. The CreatePipeline method accepts the desired “final destination”
message handler as its first argument followed by a list of all the additional message
handlers to be composed into the pipeline. The method then wires the message handlers
together by setting the InnerHandler property of the individual message handlers, and
returns the first message handler in the chain. In this example, the chain consists of
MyHandler followed by HttpControllerDispatcher. Keep in mind that for a message
handler pipeline to be created like this, all message handlers except for the innermost
handler must derive from DelegatingHandler rather than directly from HttpMessage
Handler, since the DelegatingHandler supports composition via its InnerHandler
property.

HttpControllerDispatcher
By default, the final stop in the message handler pipeline will be the HttpController
Dispatcher. This handler is the glue that binds together the message handler pipeline
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with the higher-level programming model elements of controllers and actions (we will
call this the controller pipeline). The HttpControllerDispatcher has three responsi‐
bilities:

• Select a controller using an object that implements IHttpControllerSelector.
• Get an instance of a controller using an object that implements IHttpController
Activator.

• Execute the controller instance, passing it a controller context object that is com‐
posed of the current configuration, route, and request context.

To fulfill these responsibilities, HttpControllerDispatcher relies on two noteworthy
types. These are types that implement the IHttpControllerSelector interface and
types that implement the IHttpControllerActivator interface.

Controller Selection
As its title suggests, the responsibility of the IHttpControllerSelector is to select the
proper controller based on the HTTP request. ASP.NET Web API supplies a default
implementation with the DefaultHttpControllerSelector class. This class uses the
following algorithm for choosing the controller:

• Determine whether the controller can be identified directly from the route data.
This condition is true when attribute-based routing is used.

•
• Check whether the controller name is valid. If it is either null or an empty string,

throw a 404 response exception.
• Using the controller name, look for a matching HttpControllerDescriptor in its

controller info cache and return it.

The controller info cache is a dictionary of controller names and HttpControllerDe
scriptor objects that is initialized when the cache is first accessed. During initialization,
the controller info cache uses an instance of the HttpControllerTypeCache, which in
turn uses an object that implements the IHttpControllerTypeResolver for iterating
assemblies and types and building up a list of all valid controller types. By default, Web
API uses DefaultHttpControllerTypeResolver, which selects as valid controllers any
types that meet the following conditions:

• The type is a class.
• The class is public.
• The class is not abstract.
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• The class implements or derives from a class that implements the IHttpControl
ler interface.

• The class name ends with the string "Controller".

Because controllers are discovered when the DefaultHttpControllerSelector info
cache is first accessed, any failure to find exactly one match for the requested controller
name indicates an error in the default controller selection logic. For example, if no
entries are found for the requested controller name, the framework returns an HTTP
404 Not Found response to the client. If, on the other hand, more than one entry is
found for the requested controller name, then the framework throws an InvalidOper
ationException for the ambiguous match.

Assuming that the requested controller name matches a single entry in the default con‐
troller selector’s info cache, the controller selector returns the corresponding HttpCon
trollerDescriptor value to the calling HttpControllerDispatcher.

One additional thing to note here is that the lifetime of the controller descriptor is the
duration of the HttpConfiguration object, which practically speaking means that the
controller descriptor lifetime is the lifetime of the application.

Supporting attribute-based routes
Web API 2 added the ability to specify routes as attributes. These attributes can be
applied to both controller classes and action methods, and this declarative approach to
routing adds to the purely convention-based approach of matching controllers and
actions by route parameters and naming conventions.

Mechanically, using attribute-based routing is a two-step process. The first step is dec‐
orating controllers and/or actions with RouteAttribute and supplying the appropriate
route template values. The second step is to have Web API map those attribute values
to actual route data, which the framework can then use when processing requests.

For example, consider the following basic greeting Web API:

public class GreetingController : ApiController
{
    // mapped to GET /api/greeting by default
    public string GetGreeting()
    {
        return "Hello!";
    }
}

Using attribute-based routing, we could map this controller and action to a completely
different URL without requiring a change to the global route configuration rules:

public class GreetingController : ApiController
{

The Message Handler Pipeline | 295



    // mapped to GET /services/hello
    [Route("services/hello")]
    public string GetGreeting()
    {
        return "Hello!";
    }
}

In order to ensure that attribute-based routes are correctly added to Web API’s route
configuration, we must call the MapHttpAttributeRoutes method on HttpConfigura
tion as follows:

config.MapHttpAttributeRoutes();

The approach of integrating attribute routes at configuration time enables fewer mod‐
ifications to the other framework components. For example, because all of the com‐
plexity for parsing and managing attribute-based route values is managed at the Route
Data level, the impact to DefaultHttpControllerSelector is limited to the following:

controllerDescriptor = routeData.GetDirectRouteController();
if (controllerDescriptor != null)
{
    return controllerDescriptor;
}

As the code indicates, if a controller and/or action is explicitly known from the route
as a result of matching an attribute-based route, the HttpControllerDescriptor is
immediately selected and returned. Otherwise, the convention-based controller selec‐
tion process attempts to find and select a controller based on the type name.

Plugging in a custom controller selector
While the default logic for selecting a controller will be sufficient for the majority of
Web API development scenarios, there may be cases where it is beneficial to supply a
custom selection strategy.

Overriding the default controller selection strategy requires creating a new controller
selector service and then configuring it to be used by the framework. Creating a new
controller selector is simply a matter of authoring a class that implements the IHttp
ControllerSelector interface, which is defined as follows:

public interface IHttpControllerSelector
{
        HttpControllerDescriptor SelectController(HttpRequestMessage request);
        IDictionary<string, HttpControllerDescriptor> GetControllerMapping();
}

As the name indicates, the SelectController method has the primary responsibility
of choosing a controller type for a supplied HttpRequestMessage and returning an
HttpControllerDescriptor object. The GetControllerMapping method adds a sec‐
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2. The full code for overriding the default controller suffix is more involved than simply providing a new
controller selector.

ondary responsibility to the controller selector to return the entire set of controller
names and their corresponding HttpControllerDescriptor objects as a dictionary. To
date, however, this responsibility is exercised only by ASP.NET Web API’s API explorer
feature.

We configure a custom controller selector to be used by the framework through the
HttpConfiguration object’s Services collection. For example, the following code snip‐
pet illustrates how to replace the default controller selector logic, which looks for the
suffix Controller in the class name, with a strategy that allows the developer to specify
a custom suffix:2

const string controllerSuffix = "service";

config.Services.Replace(
    typeof(IHttpControllerSelector),
    new CustomSuffixControllerSelector(config, controllerSuffix));

What Are the Default Services?
If you browse through the ASP.NET Web API source, you will see many places where
the framework components leverage the common services provided by the configura‐
tion object to get an object that implements one of the various framework service in‐
terfaces. You may be wondering, however, where the concrete types behind the interfaces
are actually declared.

A brief look into the constructor for HttpConfiguration reveals the following
declaration:

Services = new DefaultServices(this);

A further look into the DefaultServices class reveals an implementation of the Serv
icesContainer class, the type used to store common framework services, with default
service objects set in its constructor via code such as the following:

public DefaultServices(HttpConfiguration configuration)
{
    if (configuration == null)
    {
        throw Error.ArgumentNull("configuration");
    }

    _configuration = configuration;

    SetSingle<IActionValueBinder>(new DefaultActionValueBinder());
    SetSingle<IApiExplorer>(new ApiExplorer(configuration));

The Message Handler Pipeline | 297



    SetSingle<IAssembliesResolver>(new DefaultAssembliesResolver());
    SetSingle<IBodyModelValidator>(new DefaultBodyModelValidator());
    SetSingle<IContentNegotiator>(new DefaultContentNegotiator());

    ...
}

This list of default services can serve as a good starting point for exploring the default
behaviors of the framework, help you determine whether you want to replace one or
more of the default behaviors, and give you a clear sense of what component to replace
in order to modify a specific behavior.

Controller Activation
Once the controller selector finds and returns an HttpControllerDescriptor object to
the dispatcher, the dispatcher gets an instance of the controller by calling the Create
Controller method on HttpControllerDescriptor. That method, in turn, delegates
the responsibility of creating or getting a controller instance to an object that implements
the IHttpControllerActivator interface.

The IHttpControllerActivator has the single responsibility of creating controller in‐
stances, and this is reflected in its definition:

public interface IHttpControllerActivator
{
    IHttpController Create(HttpRequestMessage request,
        HttpControllerDescriptor controllerDescriptor,
        Type controllerType);
}

Similarly to controller selection, the default logic for controller activation is imple‐
mented in the class DefaultHttpControllerActivator and registered with the frame‐
work in the DefaultServices constructor.

The default controller activator creates controller objects via one of two methods. It first
attempts to create an instance using the ASP.NET Web API dependency resolver. The
dependency resolver is an implementation of the IDependencyResolver interface, and
provides a general mechanism for the framework to externalize tasks like creating ob‐
jects and managing object lifetime. In ASP.NET Web API, this is also the mechanism
used to plug in inversion-of-control (IOC) containers such as Ninject and Castle Wind‐
sor. An instance of a dependency resolver is registered with the framework through the
DependencyResolver property on the HttpConfiguration object, and when the prop‐
erty is non-null, the framework will call methods such as GetService(Type service
Type) in order to create object instances rather than create instances of those types
directly. This facility can promote more loosely coupled and extensible designs, both
for the ASP.NET Web API Framework itself and for your own services.
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In the event that a dependency resolver has not been registered with the framework or
if the dependency resolver cannot create an instance for the requested controller type,
the default controller activator attempts to create an instance of the supplied controller
type by executing the type’s parameterless constructor.

After the instance of the controller is created by the controller activator, it is passed back
to the controller dispatcher. The dispatcher then passes control flow into the controller
pipeline by calling ExecuteAsync on the controller object as follows:

return httpController.ExecuteAsync(controllerContext, cancellationToken);

Like the majority of the components discussed, the controller’s ExecuteAsync method
is asynchronous and returns an instance of Task, thereby helping to improve the
throughput of the Web API framework itself, as none of its components will block the
thread of execution with I/O operations. This efficiency enables the framework to han‐
dle an increased number of requests given a finite number of computing resources.

The Controller Pipeline
While the message handler pipeline provides abstractions for the lower-level processing
of HTTP requests and responses, the controller pipeline enables a developer to work
with higher-level programming abstractions such as controllers, actions, models, and
filters. Orchestrating all of the objects used in processing requests and responses is the
controller instance itself—hence the term controller pipeline.

ApiController
At a foundational level, an ASP.NET Web API controller is any class that implements
the IHttpController interface. This interface consists of a single, asynchronous execute
method, which by default is called by the underlying dispatcher:

public interface IHttpController
{
    Task<HttpResponseMessage> ExecuteAsync(
        HttpControllerContext controllerContext,
        CancellationToken cancellationToken);
}

While this simple interface provides a great deal of flexibility in its simplicity, it is devoid
of much of the functionality that ASP.NET developers have grown accustomed to. This
kind of functionality includes capabilities like authorization, model binding, and vali‐
dation. In order to provide these capabilities while preserving the simplicity of the in‐
terface and reducing the amount of coupling between the message handler pipeline and
the controller pipeline, the ASP.NET Web API team created the ApiController base
class. ApiController extends the core controller abstraction and provides two types of
services to the controller classes that derive from it:
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• A processing model that includes filters, model binding, and action methods.
• Additional context objects and helpers. These include objects for the underlying

configuration, request message, model state, and others.

ApiController Processing Model
The processing model orchestrated by ApiController is made up of several different
stages, and, like the lower-level message handler pipeline, provides many different
points for extending the default data flow with custom logic.

In general, the controller pipeline enables an action method to be selected for processing
a request, maps properties of the request to the parameters of the selected method, and
allows for the execution of a variety of filter types. Request processing through ApiCon
troller looks similar to Figure 12-4.

Figure 12-4. The controller pipeline

Similar to the message handler pipeline, the controller pipeline constructs a “Russian
doll” structure wherein a request flows from an outermost scope through a series of
nested scopes to the action method, which is the innermost scope. The action method
generates a response, and that response flows back from the innermost scope to the
outermost scope. Scopes in the controller pipeline are implemented via filters, and just
as with the message handler pipeline, all components of the controller pipeline are
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implemented asynchronously via tasks. This is evident in pipeline interfaces such as
IActionFilter:

public interface IActionFilter : IFilter
{
    Task<HttpResponseMessage> ExecuteActionFilterAsync(
        HttpActionContext actionContext,
        CancellationToken cancellationToken,
        Func<Task<HttpResponseMessage>> continuation);
    }
}

Filters will be described in more detail later in the chapter. First, we will explore the
process for selecting the correct action method on the controller based on aspects of
the request.

Action selection

One of the first steps taken inside of the ApiController.ExecuteAsync method is action
selection. Action selection is the process of selecting a controller method based on the
incoming HttpRequestMessage. As in the case of controller selection, action selection
is delegated to a type whose primary responsibility is action selection. This type can be
any class that implements the IHttpActionSelector interface. The signature for
IHttpActionSelector looks as follows:

public interface IHttpActionSelector
{
    HttpActionDescriptor SelectAction(HttpControllerContext controllerContext);

    ILookup<string, HttpActionDescriptor> GetActionMapping(
        HttpControllerDescriptor controllerDescriptor);
}

As in the case of IHttpControllerSelector, the IHttpActionSelector technically has
two responsibilities: selecting the action from the context and providing a list of action
mappings. The latter responsibility enables the action selector to participate in ASP.NET
Web API’s API explorer feature.

We can easily supply a custom action selector by either explicitly replacing the default
action selector (discussed next) or using a dependency resolver—generally in concert
with an IoC container. For example, the following uses the Ninject IoC container to
replace the default action selector with a custom selector, appropriately named Custom
ActionSelector:

var kernel = new StandardKernel();
kernel.Bind<IHttpActionSelector>().To<CustomActionSelector>();

config.DependencyResolver = new NinjectResolver(kernel);
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In order to decide whether it makes sense to supply a custom action selector, you must
first understand the logic implemented by the default action selector. The default action
selector provided by Web API is the ApiControllerActionSelector. Its implementa‐
tion is effectively a series of filters that are expected to yield a single action from a list
of candidate actions. The algorithm is implemented in ApiControllerActionSelec
tor’s FindMatchingActions method and is illustrated in Figure 12-5.

Figure 12-5. Default action selector logic

The initial and pivotal decision point in the default action selection algorithm is whether
or not the matched routes are standard routes (i.e., those declared in global Web API
configuration code via methods such as MapHttpRoute), or whether they are attribute-
based routes created as a result of decorating an action with the RouteAttribute at‐
tribute.

public class ValuesController
{
    [ActionName("do")]
    public string ExecuteSomething() {
        ...
    }
}
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If no action methods are found that match the value of the action route parameter, an
HTTP 404 Not Found response is returned. Otherwise, the list of matched actions is
then filtered once more to remove actions that are not allowed for the specific method
associated with the incoming request and returned as the initial action candidate list.

If the route data does not have an explicit entry for the action method, then the initial
action candidate selection logic tries to infer the action method name from the HTTP
method name. For example, for a GET request, the selector will search for qualified action
methods whose name begins with the string "Get".

If the request matches a route that has been declared via attribute-based routing, the
initial candidate action list is provided by the route itself and then filtered to remove
those candidate actions that are not appropriate for the HTTP method of the incoming
request.

After establishing the initial list of candidate action methods, the default action selection
logic executes a sequence of refinements to narrow down the list of candidate actions
to exactly one. Those refinements are as follows:

• Filter out those methods that do not contain the set of parameters required for the
matched route.

• Narrow the list of candidate actions to the actions with the lowest evaluation order.
You can control the order of candidate actions for attribute-based routing using the
RouteAttribute’s Order property. By default, Order is set to zero, resulting in the
entire set of candidate actions being returned from this refinement stage.

• Narrow the list of candidate actions to those with the highest precedence. Prece‐
dence is used for attribute-based routes and is determined algorithmically by the
RoutePrecedence.Compute function based on the matched route.

• Group the remaining list of candidate actions by the number of parameters and
then return the first candidate action from the group with the most parameters.

At this point, a single action method should be all that remains in the list of candidate
actions. Hence, the default action selector performs a final check and takes one of the
following three actions based on the number of candidate actions returned:

• If 0, return an HTTP 405 message if a candidate action exists but is not allowed for
the HTTP method of the request; return an HTTP 404 message if there is no
matching action.

• If 1, return the matching action descriptor so that it can be invoked.
• If > 1, throw an InvalidOperationException for an ambiguous match.
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Filters
As depicted in Figure 12-4, filters provide a set of nested scopes that you can use to
implement functionality that cuts across multiple controllers or actions. While con‐
ceptually similar, filters are broken down into four categories based on when they are
run and what kind of data they have access to. The four categories are authentication
filters, authorization filters, action filters, and exception filters. This factoring is illus‐
trated in Figure 12-6.

Figure 12-6. Filter classes

At a fundamental level, a filter in Web API is any class that implements the IFilter
interface, which consists of a single method:

public interface IFilter
{
    bool AllowMultiple { get; }
}

In addition to providing the IFilter interface, Web API provides a base class that
implements the interface and also derives from the .NET Framework’s Attribute class.
This enables all derived filters to be added in one of two ways. First, they can be added
directly to the global configuration object’s Filters collection as follows:

config.Filters.Add(new CustomActionFilter());

Alternately, filters that derive from FilterAttribute can be added as an attribute to
either a Web API controller class or action method as follows:

[CustomActionFilter]
public class ValuesController : ApiController
{
    ...
}
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Regardless of how filters are applied to a Web API project, they are stored in the
HttpConfiguration.Filters collection, which stores them as a collection of IFilter
objects. This generic design enables the HttpConfiguration object to contain many
different types of filters, including filter types that go beyond the four current categories
of authentication filter, authorization filter, action filter, and exception filter. Such new
filter types can be created and added to HttpConfiguration without breaking the ap‐
plication or requiring changes to HttpConfiguration. They can then be later discovered
and run by a new, custom controller class.

The ordering and execution of filters is orchestrated by ApiController based on the
following criteria:
Filter type

ApiController groups filters by type and executes each group as a different nested
scope, as shown in Figure 12-4.

Where applied
Filters added as a part of global configuration (HttpConfiguration.Fil
ters.Add(..)) are added to the Filters collection before filters added as attributes
(ActionFilterAttribute, AuthorizationFilterAttribute, ExceptionFilterAt
tribute) at the class or action method level. Filters added via attribute to the con‐
troller class are added before filters added to action methods. When filters are run,
they execute in the reverse order of how they were added. Therefore, filters added
globally are run first, followed by filters added via attribute to the controller, fol‐
lowed by filters added to the action method.

Order added
After filters have been grouped, they are executed within the group based on the
order in which they were added.

Authentication filters
Authentication filters have two responsibilities. First, they examine a request as it flows
through the pipeline and validate a set of claims to establish an identity for the calling
user. In the event that the identity cannot be established from the provided claims, the
authentication filter may also be used to modify the response to provide further in‐
structions to the user agent for establishing a user’s identity. This response is known as
a challenge response. Authentication filters are discussed at greater length in Chapter 15.

Authorization filters
Authorization filters apply policy to enforce the level to which a user, client application,
or other principal (in security terms) can access an HTTP resource or set of resources
provided by Web API. The technical definition of an authorization filter is simply a class
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that implements the IAuthorizationFilter interface. This interface contains a single
method for running the filter asynchronously:

Task<HttpResponseMessage> ExecuteAuthorizationFilterAsync(
    HttpActionContext actionContext,
    CancellationToken cancellationToken,
    Func<Task<HttpResponseMessage>> continuation);

While this interface is the only requirement for running authorization filters, it is not
the most developer-friendly programming model—largely because of the complexities
associated with asynchronous programming and the .NET Framework’s task API. As a
result, Web API provides the AuthorizationFilterAttribute class. This class imple‐
ments the IAuthorizationFilter interface as well as the ExecuteAuthorizationFil
terAsync method. It then provides the following virtual method, which can be over‐
ridden by derived classes:

public virtual void OnAuthorization(HttpActionContext actionContext);

The AuthorizationFilterAttribute calls OnAuthorization from its ExecuteAuthor
izationFilterAsync method, which enables derived authorization filters to be written
in a more familiar, synchronous style. After calling OnAuthorization, the base class
then examines the state of the HttpActionContext object and decides whether to let
request processing continue or whether to return a new Task with a new HttpRespon
seMessage indicating an authorization failure.

When you are authoring a custom authorization filter that is derived from Authoriza
tionFilterAttribute, the way to indicate an authorization failure is to set an HttpRes
ponseMessage object instance on actionContext.Response, as follows:

public class CustomAuthFilter : AuthorizationFilterAttribute
{
   public override void OnAuthorization(HttpActionContext actionContext)
   {
      actionContext.Response = actionContext.Request.CreateErrorResponse(
         HttpStatusCode.Unauthorized, "denied");
   }
}

When the call to OnAuthorize is finished, the AuthorizationFilterAttribute class
uses the following code to analyze the state of the context and either continue processing
or return a response immediately:

if (actionContext.Response != null)
{
    return TaskHelpers.FromResult(actionContext.Response);
}
else
{
    return continuation();
}
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Additionally, if an exception is thrown from within OnAuthorize, the Authorization
FilterAttribute class will catch the exception and halt processing, returning an HTTP
response with the 500 Internal Server Error response code:

try
{
    OnAuthorization(actionContext);
}
catch (Exception e)
{
    return TaskHelpers.FromError<HttpResponseMessage>(e);
}

When you’re designing and implementing a new authorization filter, a good starting
point is the existing AuthorizeAttribute provided by Web API. This attribute uses
Thread.CurrentPrincipal to get the identity (and optionally role membership infor‐
mation) for an authenticated user and then compares it to policy information provided
in the attribute’s constructor. Additionally, an interesting detail to note about the Au
thorizeAttribute is that it checks for the presence of the AllowAnonymousAttri
bute on both the action method and the containing controller, and exits successfully if
the attribute is present.

Action filters
Action filters are conceptually very similar to authorization filters. In fact, the signature
of the IActionFilter execute method looks identical to the corresponding method on
IAuthorizationFilter:

Task<HttpResponseMessage> IActionFilter.ExecuteActionFilterAsync(
    HttpActionContext actionContext,
    CancellationToken cancellationToken,
    Func<Task<HttpResponseMessage>> continuation)

Action filters differ from authorization filters in a couple of respects, however. The first
difference is when action filters will be called. As we discussed earlier, filters are grouped
by type and different groups are executed at different times. Authorization filters are
run first, followed by action filters, followed by exception filters.

The second, and more notable, difference between action filters and the other two filter
types is that action filters give the developer the ability to process a request on both sides
of the call to the action method. This capability is exposed by the following two methods
on the ActionFilterAttribute class:

public virtual void OnActionExecuting(HttpActionContext actionContext);

public virtual void OnActionExecuted(
      HttpActionExecutedContext actionExecutedContext);
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Just like in the case of the other filter types, ActionFilterAttribute implements the
IActionFilter interface to abstract the complexities of working directly with the Task
API as well as to derive from Attribute, thereby enabling action filters to be applied
directly to controller classes and action methods.

As a developer, you can easily create action filters by simply deriving from ActionFil
terAttribute and overriding either or both the OnActionExecuting and OnActionExe
cuted methods. For example, Example 12-3 performs some basic auditing of action
methods.

Example 12-3. An example action filter that audits action methods
public class AuditActionFilter : ActionFilterAttribute
{
   public override void OnActionExecuting(HttpActionContext c)
   {
      Trace.TraceInformation("Calling action {0}::{1} with {2} arguments",
         c.ControllerContext.ControllerDescriptor.ControllerName,
         c.ActionDescriptor.ActionName,
         c.ActionArguments.Count);
   }

   public override void OnActionExecuted(HttpActionExecutedContext c)
   {
      object returnVal = null;
      var oc = c.Response.Content as ObjectContent;
      if (oc != null)
         returnVal = oc.Value;

      Trace.TraceInformation("Ran action {0}::{1} with result {2}",
        c.ActionContext.ControllerContext.ControllerDescriptor.ControllerName,
        c.ActionContext.ActionDescriptor.ActionName,
        returnVal ?? string.Empty);
   }
}

If an exception is thrown from within an action filter, a Task<HttpResponseMessage>
containing the error is created and returned, thereby halting request processing by other
components in the pipeline. This is consistent with the logic discussed for authorization
filters. Because action filters enable processing both before and after the action method,
ActionFilterAttribute contains additional logic to nullify the context of the response
message if an exception is thrown in the OnActionExecuted side of the filter. It accom‐
plishes this by simply wrapping the call to OnActionExecuted in a try..catch block
and setting the response to null in the catch block:

try
{
   OnActionExecuted(executedContext);
   ...
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}
catch
{
   actionContext.Response = null;
   throw;
}

Exception filters
Exception filters exist for the purpose of, as their name suggests, enabling the custom
handling of exceptions that are thrown during the controller pipeline. As in the case of
authorization and action filters, you define exception filters by implementing the IEx
ceptionFilter interface. Additionally, the framework provides the base class, Excep
tionFilterAttribute, which provides .NET Framework attribute capabilities and a
more simplified programming model to classes that derive from it.

Exception filters can be extremely helpful in preventing the flow of potentially sensitive
information outside of your service. As an example, database exceptions typically con‐
tain details identifying your database server or schema design. This kind of information
could be used by an attacker to launch attacks against your database. The following is
an example of an exception filter that logs exception details to the .NET Framework’s
diagnostics system and then returns a generic error response:

public class CustomExceptionFilter : ExceptionFilterAttribute
{
   public override void OnException(
      HttpActionExecutedContext actionExecutedContext)
   {
      var x = actionExecutedContext.Exception;

      Trace.TraceError(x.ToString());

      var errorResponse = actionExecutedContext.Request.CreateErrorResponse(
         HttpStatusCode.InternalServerError,
         "Please contact your server administrator for more details.");

      actionExecutedContext.Response = errorResponse;
   }
}

When you apply this filter (globally, or at the controller or action level), action methods
such as the following:

[CustomExceptionFilter]
public IEnumerable<string> Get()
{
   ...
   throw new Exception("Here are all of my users credit card numbers...");
}

will return a sanitized error message to the client:
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$ curl http://localhost:54841/api/values
{"Message":"Please contact your server administrator for more details."}

But what happens if your exception filter throws an exception? More broadly, what if
you don’t have an exception filter? Where are unhandled exceptions ultimately caught?
The answer is the HttpControllerDispatcher. If you remember from earlier in the
chapter, the HttpControllerDispatcher is by default the last component in the message
handler pipeline, and it is responsible for calling the ExcecuteAsync method on a Web
API controller. In addition, it wraps this call in a try..catch block, as shown here:

protected override async Task<HttpResponseMessage> SendAsync(
   HttpRequestMessage request, CancellationToken cancellationToken)
{
   try
   {
      return await SendAsyncCore(request, cancellationToken);
   }
   catch (HttpResponseException httpResponseException)
   {
      return httpResponseException.Response;
   }
   catch (Exception exception)
   {
      return request.CreateErrorResponse(HttpStatusCode.InternalServerError,
          exception);
   }
}

As you can see, the dispatcher is capable of returning the HttpResponseMessage object
attached to an HttpResponseException. Additionally, in the case where an unhandled
exception is caught, the dispatcher contains a generic exception handler that turns the
exception into an HttpResponseMessage containing details of the exception along with
an HTTP 500 Internal Server Error response code.

Model binding and validation
Chapter 13 will focus on model binding, so we will not spend a significant amount of
time describing it here. However, the key point from the perspective of the controller
pipeline is that model binding occurs just before the action filters are processed, as
shown by the following fragment from the ApiController class source code:

private async Task<HttpResponseMessage> ExecuteAction(
   HttpActionBinding actionBinding, HttpActionContext actionContext,
   CancellationToken cancellationToken, IEnumerable<IActionFilter> actionFilters,
   ServicesContainer controllerServices)
{

   ...

   await actionBinding.ExecuteBindingAsync(actionContext, cancellationToken);
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   _modelState = actionContext.ModelState;

   ...
}

The order is important here, as it means that the model state is available to action filters,
making it trivial to, for example, build an action filter that automatically returns an
HTTP 400 Bad Request response in the event of an invalid model. This enables us to
stop inserting code like the following into every PUT and POST action method:

public void Post(ModelValue v)
{
   if (!ModelState.IsValid)
   {
      var e = Request.CreateErrorResponse(HttpStatusCode.BadRequest, ModelState);
      throw new HttpResponseException(e);
   }
}

Instead, this model state check can be pulled into a simple action filter, as shown in
Example 12-4.

Example 12-4. Model state validation filter
public class VerifyModelState : ActionFilterAttribute
{
   public override void OnActionExecuting(HttpActionContext actionContext)
   {
      if (!actionContext.ModelState.IsValid)
      {
         var e = actionContext.Request.CreateErrorResponse(
            HttpStatusCode.BadRequest, actionContext.ModelState);
            actionContext.Response = e;
      }
   }
}

Action invocation
The final step in the controller pipeline is to invoke the selected action method on the
controller. This responsibility falls to a specialized Web API component called the action
invoker. An action invoker is any class that implements the IHttpActionInvoker in‐
terface. This interface has the following signature:

public interface IHttpActionInvoker
{
   Task<HttpResponseMessage> InvokeActionAsync(
      HttpActionContext actionContext, CancellationToken cancellationToken);
}

ApiController requests the action invoker from DefaultServices, which means that
you can replace it using either the Replace method on DefaultServices or using
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DependencyResolver in conjunction with a dependency injection framework. However,
the default implementation supplied by the framework, ApiControllerActionInvok
er, should be sufficient for most requirements.

The default invoker performs two primary functions, as illustrated here:

object actionResult = await actionDescriptor.ExecuteAsync(controllerContext,
   actionContext.ActionArguments,
   cancellationToken);

return actionDescriptor.ResultConverter.Convert(controllerContext, actionResult);

The first responsibility is, as you would expect, to invoke the selected action method.
The second responsibility is to convert the result of the action method call into an
HttpResponseMessage. For this task, the invoker uses a specialized object called an
action result converter. An action result converter implements the IActionResult
Converter interface, which contains a single method accepting some context and re‐
turning an HttpResponseMessage. Currently, Web API contains three action result
converters:
ResponseMessageResultConverter

Used when an action method returns an HttpResponseMessage directly; passes the
responses message through.

ValueResultConverter<T>

Used when an action method returns a standard .NET Framework type; creates an
HttpResponseMessage using the associated HttpRequestMethod’s CreateRes
ponse<T> method.

VoidResultConverter

Used when an action method has a void return value; creates a new HttpResponse
Message with a status of 204 No Content.

Once the return value has been converted to an HttpResponseMessage, that message
can begin the flow back out of the controller and message handler pipelines, and then
over the wire to the client.

Conclusion
In this chapter, we explored in depth the two pipelines that handle request processing
in ASP.NET Web API: the low-level message handler pipeline and the controller pipe‐
line. Each has associated benefits as well as trade-offs. For example, the message handler
pipeline is executed early in the handling of requests, so it can be advantageous to
leverage when your component could prevent the needless execution of more expensive
code paths. However, this comes at the cost of having to work at the level of HttpRe
questMessage and HttpResponseMessage. The controller pipeline, on the other hand,
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provides its components access to the higher-level programming model objects, such
as those that describe the controller, action methods, and associated attributes. Both of
these pipelines provide a complete set of default components as well as a flexible model
for extensibility using either HttpConfiguration or a custom DependencyResolver.

In the next chapter, we will take a much deeper look at the core building blocks that
make up the message handler pipeline, including the message handlers themselves as
well as the HTTP primitives, HttpRequestMessage and HttpResponseMessage.
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CHAPTER 13

Formatters and Model Binding

Anyone can write code that a computer can understand. Only good programmers write
code that humans can understand.

We previously discussed media types and their semantics as a way to represent concepts
in the domain space of a system. Once we move to the implementation side, those
abstractions must be translated somehow to a language that programmers speak. In the
case of ASP.NET Web API, that final representation would be objects—or models, to
give them a more precise name. Having said that, models represent a level of abstraction
that developers use to map objects into media type representations or other different
parts in an HTTP message.

The model binding infrastructure in ASP.NET Web API provides the necessary runtime
services to perform many of these mappings for us. In that way, a developer can focus
on the implementation details of Web API and leave all serialization concerns to the
framework. There is an evident advantage in using this kind of architecture. The de‐
veloper can work with a single level of abstraction, which is the model, and support a
variety of media types according to the requirements of the different Web API con‐
sumers. For example, in our Issue Tracker application, we have a single model class
representing an issue, which can optionally be converted to different media types like
JSON or XML by the framework.

As part of this chapter, we will explore model binding in detail by looking at the different
runtime components and extensibility hooks provided by the framework to customize
or add new model binding functionality.

The Importance of Models in ASP.NET Web API
As a rule of thumb, controller actions that focus on single concerns are easier to test,
extend, and maintain in the long run. Converting message representations into model
objects is one of those concerns that you should try to move away from your action
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implementations in the first place. Consider Example 13-1, in which serialization con‐
cerns are mixed with the implementation of a Web API action.

Example 13-1. Action with serialization concerns
public  HttpResponseMessage Post(HttpRequestMessage request) // <1>
{
  int id = int.Parse(request.RequestUri.ParseQueryString().Get("id")); // <2>

  var values = request.Content.ReadAsFormDataAsync().Result // <3>

  var issue = new Issue
  {
     Id = id,
     Name = values["name"],
     Description = values["description"]
  };

  // do something with the constructed issue
}

There are a few evident problems with this code:

• The generic signature in the controller method makes it really hard to infer its
purpose without looking at the implementation details. It also limits our ability to
overload the Post method with different arguments for supporting multiple sce‐
narios.

• It is not checking whether the parameter in the query string really exists or can be
converted to an integer.

• It is tying the implementation to a single media type (application/form-url-
encoded) and also blocking the execution thread for reading the body content syn‐
chronously. To this last point, invoking the Result property directly on asynchro‐
nous tasks without checking if they are completed is not considered good practice
and might prevent the execution thread from returning to the thread pool to attend
to new requests.

We can easily rewrite this action to use a model class only and avoid all these issues, as
illustrated in Example 13-2.

Example 13-2. Action with model binding
public void Post(Issue issue) // <1>
{
  // do something with the constructed issue
}
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As you can see, all the serialization concerns literally disappeared from the implemen‐
tation, leaving only what it matters most. The model binding infrastructure in the
framework will take care of the rest at the moment of executing the action.

How Model Binding Works
At a very core level in the model binding infrastructure is a component called HttpPar
ameterBinding, which knows how to infer the value of a parameter from a request
message and is demonstrated in Example 13-3. Every HttpParameterBinding instance
is tied to a single parameter, which is defined at the moment of the Web API with the
HttpConfiguration object. How that instance is tied to a parameter is determined by
another configuration class called HttpParameterDescriptor, which contains meta‐
data for describing a parameter in terms of name, type, or any other attribute that could
be used by the model binding infrastructure to select an HttpParameterBinding.

Example 13-3. Action with model binding
public abstract class HttpParameterBinding
{
  protected HttpParameterBinding(HttpParameterDescriptor descriptor);

  public abstract Task ExecuteBindingAsync(ModelMetadataProvider metadataProvider,
  HttpActionContext actionContext, CancellationToken cancellationToken); // <1>
}

Example 13-3 shows the basic structure of an HttpParameterBinding with the key
method ExecuteBindingAsync, which every implementation must provide to perform
the binding for a parameter.

As happens with many of the runtime components in ASP.NET Web API, an HttpPar
ameterBinding also offers an asynchronous signature for its core method, ExecuteBin
dingAsync. This would be useful if you had, for example, an implementation that does
not necessarily rely on values obtained from the current request message and performs
some I/O operations such as querying a database or reading a file. Example 13-4 shows
a basic implementation of an HttpParameterBinding for binding action parameters of
the type CultureInfo from the culture set in the executing thread.

Example 13-4. HttpParameterBinding implementation
public class CultureParameterBinding : HttpParameterBinding
{
  public CultureParameterBinding(HttpParameterDescriptor descriptor) // <1>
    : base(descriptor)
  {
  }

  public override System.Threading.Tasks.Task
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  ExecuteBindingAsync(System.Web.Http.Metadata.ModelMetadataProvider
  metadataProvider, HttpActionContext   actionContext,
  System.Threading.CancellationToken cancellationToken)
  {
    CultureInfo culture = Thread.CurrentThread.CurrentCulture; // <2>
    SetValue(actionContext, culture); // <3>

    var tsc = new TaskCompletionSource<object>(); // <4>
    tsc.SetResult(null);
    return tsc.Task;
  }
}

An instance of our HttpParameterBinding is created with a descriptor. Our imple‐
mentation just ignores that parameter, but other implementations might use some of
its information <1>. The ExecuteBindingAsync method gets the CultureInfo instance
from the current thread <2> and uses it to set the binding with the help of the SetVal
ue method in the base class <3>. As the last step in this method, a TaskCompletion
Source is created for returning a new task, already completed synchronously <4>. In an
asynchronous version of this method, SetValue would probably be called as part of the
returned task.

This CultureParameterBinding can now be used to inject a CultureInfo instance di‐
rectly as a parameter of an action method, as shown in Example 13-5.

Example 13-5. A Web API action that receives a CultureInfo instance as a parameter
public class HomeController : ApiController
{
  [HttpGet]
  public HttpResponseMessage BindCulture(CultureInfo culture)
  {
    return Request.CreateResponse(System.Net.HttpStatusCode.Accepted,
        String.Format("BindCulture with name {0}.", culture.Name));
  }

Now you know what an HttpParameterBinding is, but we haven’t discussed yet how it
is configured and selected by the framework when an action is executed. This selection
is made in one of the many pluggable services available in the
System.Web.Http.ModelBinding.IActionValueBinder framework, whose default im‐
plementation is System.Web.Http.ModelBinding.DefaultActionValueBinder. An
IActionValueBinder is reponsible for returning an HttpActionBinding instance,
which mainly contains a collection of HttpParameterBinding instances associated with
a given controller action that can be cached across requests:

public interface IActionValueBinder
{
  HttpActionBinding GetBinding(HttpActionDescriptor actionDescriptor);
}
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The built-in implementation in DefaultActionValueBinder uses reflection to build a
list of HttpParameterDescriptors, which is later used for querying the configuration
and selecting the appropriate HttpParameterBinding instances (see Figure 13-1).

Figure 13-1. The HttpParameterBinding selection

This class currently supports two different ways to determine which HttpParameter
Binding instances are associated with an action. In the first one, the association is done
through configuration with the property ParameterBindingRules in the HttpConfigu
ration object, which exposes a set of rules for choosing an binding instance for a given
HttpParameterDescriptor. Those rules take the shape of a delegate, Func<HttpPara
meterDescriptor, HttpParameterBinding>, that receives a descriptor as a parameter
and returns a binding instance. That means you can either provide a method callback
or a lambda expression to resolve the bindings. For our scenario with the CulturePar
ameterBinding, we need a rule that returns our binding for an HttpParameterDescrip
tor associated with the type System.Globalization.CultureInfo, as shown in
Example 13-6.

Example 13-6. HttpParameterBinding configuration with a rule
config.ParameterBindingRules.Insert(0, (descriptor) => // <1>
{
    if (descriptor.ParameterType == typeof(System.Globalization.CultureInfo)) // <2>
      return new CultureParameterBinding(descriptor);

    return null;
});

The new rule is inserted with a lambda expression <1> that checks for the Parameter
Type property in the descriptor and returns the binding only when the type is equal to
System.Globalization.CultureInfo <2>.
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A second mechanism, which is more declarative, involves the use of an attribute, Pa
rameterBindingAttribute, that we need to derive (as we will explore in the next sec‐
tion).

If no mapping rule or ParameterBindingAttribute is found, this binder uses a default
policy, which binds simple types to URI segments or query string variables and complex
types to the request body.

Built-In Model Binders
The framework ships with several built-in implementations, but only three of them
deserve special attention from a developer: ModelBindingParameterBinder, Format
terParameterBinder, and HttpRequestParameterBinding, which implement com‐
pletely different ways of binding a message part to a model. The first one, ModelBin
dingParameterBinder, uses an approach borrowed from ASP.NET MVC in which the
model is composed of different parts in the message, as if they are Lego building blocks.
The second one, FormatterParameterBinder, relies on formatters that understand all
the semantics and formatting of a given media type and know how to serialize or de‐
serialize a model applying those semantics. Formatters represent a key part of content
negotiation and are the preferred method for binding a message body to a model. Finally,
the third one, HttpRequestParameterBinding, is used for supporting scenarios with
generic actions that use HttpRequestMessage or HttpResponseMessage instances di‐
rectly as part of the method signature.

The ModelBindingParameterBinder Implementation
The ModelBindingParameterBinder implementation reuses the same idea applied in
ASP.NET MVC for doing model binding. It relies on value providers, which know how
to obtain data from different parts of an HTTP message, and model binders for assem‐
bling those parts into a model.

This implementation is mainly focused on binding simple key/value pairs such as those
found in HTTP headers, URL segments, query strings, or a body encoded with appli
cation/form-url-encoded (the media type used for encoding an HTTP form). All
these values are usually strings that can be found in the message and converted to prim‐
itive types. Modeling binders do not know anything specific about media types or how
they can be interpreted; that’s the job of the formatters, which we will discuss in detail
in the next section.

The framework ships with several built-in model binder implementations that assemble
different small pieces found in an HTTP message into fairly complex models.To be more
precise, those implementations also take care of converting strings into simple data types
such as Timespan, Int, Guid, Decimal, or other types decorated with a type converter
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before hydrating the model. Two examples of these built-in implementations are Array
ModelBinder and TypeConverterModelBinder, both in the System.Web.Http.Model
Binding.Binders namespace. It’s worth mentioning that model binders are mostly used
for rehydrating simple types, or as building blocks for composing more complex types.
These built-in implementations typically cover the most common scenarios, so you will
have to think twice before you start writing a new model binder from scratch.

Figure 13-2. Model binding in action

In Figure 13-2, the configured value providers first take care of decomposing the mes‐
sage into pieces for getting different values such as the issue ID from the query string
and the rest of the fields from the message body, which were submitted as a HTTP PUT
with the URL form encoding media type. The selected model binder works closely with
the value providers to request the data needed for initializing a new Issue class instance.

Value Providers
Value providers provide a thin abstraction layer for decoupling model binders from any
messaging details. They do this by aggregating values from different parts of an HTTP
message, and providing an uniform interface to consume them.

At a very core level, every value provider implements the System.Web.Http.ValuePro
viders.IValueProvider interface, as shown in Example 13-7.

Example 13-7. IValueProvider interface definition
public interface IValueProvider
{
  bool ContainsPrefix(string prefix); // <1>
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  ValueProviderResult GetValue(string key); // <2>
}

The first method, ContainsPrefix <1>, returns a Boolean value indicating whether the
value provider implementation can provide a value for a key with the prefix passed as
an argument, which typically represents a property name in the model being deserial‐
ized.

The second method, and probably the most important, GetValue <2>, searches the key
passed as an argument in the HTTP message and returns the associated value. The value
is not returned as a raw string directly but as a ValueProviderResult instance, which
contains methods for getting the raw value or a value cast to an specific type.

You might want to create a new value provider or derive from an existing one for ad‐
dressing new use cases such as searching values in the request message under specific
name conventions or in other places such as custom cookies.

Example 13-8 shows a basic implementation of a value provider for searching headers
with a vendor prefix X-.

Example 13-8. IValueProvider implementation
public class HeaderValueProvider : IValueProvider
{
  public const string HeaderPrefix = "X-";

  private HttpControllerContext context;

  public HeaderValueProvider(HttpControllerContext context) // <1>
  {
    this.context = context;
  }

  public bool ContainsPrefix(string prefix)
  {
    var contains = context.Request
      .Headers
      .Any(h => h.Key.Contains(HeaderPrefix + prefix)); // <2>

    return contains;
  }

  public ValueProviderResult GetValue(string key)
  {
    if (!context.Request.Headers.Any(h => h.Key == HeaderPrefix + key))
      return null;

    var value = context.Request
      .Headers
      .GetValues(HeaderPrefix + key).First(); // <3>
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    var stringValue = (value is string) ? (string)value : value.ToString(); // <4>

    return new ValueProviderResult(value, stringValue,
       CultureInfo.CurrentCulture); // <5>
  }
}

The HeaderValueProvider implementation is constructed with an HttpController
Context instance that provides access to the execution context and also the request
message <1>. The ContainsPrefix method returns true for any key in the HTTP re‐
quest headers starting with an X- prefix <2>, and the GetValue method gets its value
<3>. That value is returned in a new ValueProviderResult instance <5> and also as a
raw string <4>.

A IValueProvider implementation can be injected at runtime through a ValueProvi
derFactory, which is a class that derives from the abstract class System.Web.Http.Val
ueProviders.ValueProviderFactory and overrides the method GetValueProvider
for returning instances of the IValueProvider implementation. You can find the cor‐
responding value provider factory implementation for HeaderValueProvider in
Example 13-9.

Example 13-9. ValueProviderFactory implementation
public class HeaderValueProviderFactory : ValueProviderFactory
{
  public override IValueProvider GetValueProvider(HttpActionContext actionContext)
  {
    return new HeaderValueProvider(actionContext.ControllerContext); // <1>
  }
}

The HeaderValueProviderFactory implementation instantiates a new HeaderValue
Provider using the current HttpActionContext as an argument in the constructor
<1>. We can register this factory in the HttpConfiguration object using the global
dependency resolver, as shown in Example 13-10.

Example 13-10. The HeaderValueProviderFactory injected in the configuration for a
web host
public static void RegisterValueProvider(HttpConfiguration config)
{
  var valueProviderFactories = config.ServiceResolver
     .GetValueProviderFactories().ToList();

  valueProviderFactories.Insert(0, new HeaderValueProviderFactory()); // <1>

  config.ServiceResolver.SetServices(typeof(System.Web.Http.ValueProviders
     .ValueProviderFactory),
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     valueProviderFactories.ToArray()); // <2>
}

The factory is added to the existing list of factories in the first position <1>, so it takes
precedence when a value needs to be provided, and is injected afterward as a service
with the dependency resolver <2>.

The most important value providers shipped with the framework are Sys

tem.Web.Http.ValueProviders.Providers.QueryStringValueProvider and Sys

tem.Web.Http.ValueProviders.Providers.RouteDataValueProvider, and their cor‐
respoding factories, System.Web.Http.ValueProviders.Providers.QueryStringVa
lueProviderFactory and System.Web.Http.ValueProviders.Providers.RouteData
ValueProvider. While the first provider parses and provides values found in the query
string, the second is responsible for obtaining values from the route parameters (i.e.,
the parameters that you define at the route level in the route configuration).

Model Binders
Model binders orchestrate all the actions for assembling a new model instance from the
different data pieces requested to the configured value providers. A model binder im‐
plements the interface System.Web.Http.ModelBinding.IModelBinder, which con‐
tains only one method, BindModel, where all the magic happens (see Example 13-11).

Example 13-11. IModelBinder interface
public interface IModelBinder
{
  bool BindModel(HttpActionContext actionContext, ModelBindingContext
  bindingContext); // <1>
}

The BindModel method receives two objects <1>, an HttpActionContext instance with
specific information about the current execution, and an instance of ModelBindingCon
tent representing the context of the model binding process. This method also returns
a Boolean value indicating whether the implementation could successfully assemble a
new model instance. There are two important properties available as part of the binding
context, ModelState and ModelMetadata. The former is a property bag class used by
the model binder for storing the results of the binding model process or any error that
might happen in that process. The latter provides access to the discovered metadata
associated to the model, such as available properties or any component model attribute
for performing data validations. Although this interface looks very simple at first glance,
it hides a good deal of the complexity required for implementing a model binder and
providing the right behavior at runtime. For that reason, the following sequence de‐
scribes in detail all the steps performed by an IModelBinder implementation.
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1. The implementation tries to get all the values it needs to assemble a new model
from the value provider passed as part of the binding context. Although the binding
context provides access to a single value provider, that instance usually represents
a built-in value provider, CompositeValueProvider, which implements the IVa
lueProvider interface but internally delegates the method calls to all the configured
value providers.

2. A model is created and initialized with all the values obtained from the value pro‐
vider. If some error happens during the model initialization, the exceptions are set
on the binding context through the ModelState property.

3. The model is set on the binding context.

Example 13-12 shows a model binder implementation to create instances of the Issue
model class previously discussed in this chapter.

Example 13-12. IssueModelBinder implementation
public class IssueModelBinder : IModelBinder
{
  public bool BindModel(HttpActionContext actionContext, ModelBindingContext
  bindingContext)
  {
    var model = (Issue)bindingContext.Model ?? new Issue();

    var hasPrefix = bindingContext.ValueProvider
      .ContainsPrefix(bindingContext.ModelName);

    var searchPrefix = (hasPrefix) ? bindingContext.ModelName + "." : "";

    int id = 0;
    if(int.TryParse(GetValue(bindingContext, searchPrefix, "Id"), out id)
    {
      model.Id = id; // <1>
    }

    model.Name = GetValue(bindingContext, searchPrefix, "Name"); // <2>
    model.Description = GetValue(bindingContext, searchPrefix, "Description"); // <3>

    bindingContext.Model = model;

    return true;
  }

  private string GetValue(ModelBindingContext context, string prefix, string key)
  {
    var result = context.ValueProvider.GetValue(prefix + key); // <4>
    return result == null ? null : result.AttemptedValue;
  }
}
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This implementation uses the value provider available as part of the binding context
<1> for requesting data, and binds those values to the model’s properties afterward in
<2>, <3>, and <4>. This is not something you would likely do in a real application, but
it provides a simple demonstration of how an IModelBinder implementation might
look.

A model binder implementation is finally configured and injected at runtime through
a model binder provider, which works as a factory. A model binder provider derives
from the base class System.Web.Http.ModelBinding.ModelBinderProvider and im‐
plements the method GetBinder for returning a new model binder instance, as shown
in Example 13-13.

Example 13-13. A ModelBinderImplementation for returning IssueModelBinder
instances
public class IssueModelBinderProvider : ModelBinderProvider
{
  public override IModelBinder GetBinder(HttpActionContext actionContext,
  ModelBindingContext bindingContext)
  {
    return new IssueModelBinder();
  }
}

You can register this provider by using the dependency resolver available as part of the
HttpConfiguration object, or by decorating the model class with a Sys

tem.Web.Http.ModelBinding.ModelBinderAttribute, as shown in Examples 13-14
and 13-15.

Example 13-14. A model class decorated with ModelBinderAttribute
[ModelBinder(typeof(IssueModelBinderProvider))]
public class Issue
{
  public int Id { get; set; }
  public string Name { get; set; }
  public string Description { get; set; }
}

Example 13-15. A parameter decorated with ModelBinderAttribute
public void Post([ModelBinder(typeof(IssueModelBinderProvider))]Issue issue)
{
}

An interesting fact about the ModelBinderAttribute is that it derives from the previ‐
ously discussed attribute ParameterBindingAttribute. This attribute was used to de‐
claratively attach an HttpParameterBinding instance to a parameter. In this case, the
ModelBinderAttribute initializes a new instance of ModelBindingParameterBinder
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that internally uses the ModelBinderProvider passed as an argument (IssueModelBin
derProvider, in our examples).

Model Binding Against URIs Only
The framework ships with another attribute, FromUriAttribute, that derives from the
ModelBinderAttribute to force the runtime to perform the binding only against data
available in the URL. This is useful for binding values found in the URL to properties
in a model class, as the framework will bind values in the URL only against simple types
by default.

Example 13-16 illustrates how the query string variables Lang and Filter are automat‐
ically mapped to the properties with the same name on the IssueFilters model.

Example 13-16. Model binding with query string variables
// Sample url: http://../Issues?Lang=en&Filter=2345

public class IssueFilters
{
  public string Lang { get; set; }
  public string Filter { get; set; }
}

public IEnumerable<Issue> Get([FromUri]IssueFilters)
{
  // Action implementation
}

The FormatterParameterBinder Implementation
This implementation relies on formatters, which were introduced in ASP.NET Web API
for supporting better content-negotiation scenarios with the use of media types. In
ASP.NET MVC, only the HTML (text/html) and JSON (application/json) media
types were treated as first-class citizens and fully supported across the entire stack. Also,
there was not a consistent model for supporting content negotiation. You could support
different media types for the response messages by providing custom ActionResult
implementations, but it was not clear how a new media type could be introduced and
handled by the framework. Developers typically solved this by leveraging the model
binding infrastructure with new model binders or value providers.

Fortunately, this inconsistency has been solved in ASP.NET Web API with the intro‐
duction of formatters. A formatter now unifies all the serialization concerns by pro‐
viding a single entry point for serializing or deserializing a model using the format
expressed by a media type. The formatters to use for a given message will be determined
by the content negotiation algorithm.
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Every formatter derives from the base class MediaTypeFormatter (see Example 13-17)
and overrides the methods CanReadType and ReadFromStreamAsync for supporting de‐
serialization, and CanWriteType and WriteToStreamAsync for supporting serialization
of models following the semantics and format of a media type.

Example 13-17. MediaTypeFormatter class definition
public abstract class MediaTypeFormatter
{
  public Collection<Encoding> SupportedEncodings { get; }

  public Collection<MediaTypeHeaderValue> SupportedMediaTypes { get; }

  public Collection<MediaTypeMapping> MediaTypeMappings { get; }

  public abstract bool CanReadType(Type type);

  public abstract bool CanWriteType(Type type);

  public virtual Task<object> ReadFromStreamAsync(Type type, Stream readStream,
    HttpContent content, IFormatterLogger formatterLogger);

  public virtual Task WriteToStreamAsync(Type type, object value,
    Stream writeStream, HttpContent content, TransportContext transportContext);
}

The following list summarizes the principal characteristics of the MediaTypeFormat
ter class:

• The CanReadType and CanWriteType methods receive a type as an argument, and
must return a value indicating whether they can read or write an object of that type
into an stream representing the message body. This means a formatter might know
how to write a type but not how to read it from an stream, for example.

• The SupportedMediaTypes collection specifies the list of supported media types
(e.g., text/html). This list is typically initialized in the formatter constructor meth‐
od. The runtime will determine which formatter to use during the content nego‐
tiation handshake based on the value returned by the CanReadType or CanWrite
Type methods and the supported media types. It’s worth mentioning that a request
message can mix different media types sometimes when the Content-Type header
is set to multipart, so every part defines its media type. The runtime can handle this
scenario as well by selecting one or more formatters for all the present media types.

• A MediaTypeFormatter adheres to the Task Parallel Library (TPL) programming
model for the read and write operations. Most implementations will still run syn‐
chronously, as they involve only serialization.

• The MediaTypeMappings collection allows a formatter to define how to look for the
media type associated with a request message. (e.g., query string, HTTP header).
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For example, a client application might send the expected media type format for
the response as part of the query string.

The framework includes a set of formatters out of the box for handling the most com‐
mon media types such as form-encoded data (FormUrlEncodedMediaTypeFormatter),
JSON (JsonMediaTypeFormatter), or XML (XmlMediaTypeFormatter). For other me‐
dia types, you will have to write your own implementation, or use one of the many
implementations provided by the open source community.

JsonMediaTypeFormatter and XmlMediaTypeFormatter
It is worth mentioning that the JsonMediaTypeFormatter implementation currently
uses the Json.NET library internally to serialize/deserialize JSON payloads, and the
XmlMediaTypeFormatter implementation uses either the DataContractSerializer or
the XmlSerializer classes included in the .NET Framework. This class provides a
Boolean property UseXmlSerializer to use the XmlSerializer class or not, which is
set to false by default. You can extend these classes to use your libraries of preference
for serializing XML or JSON.

Now we’ll discuss the implementation of a MediaTypeFormatter for serializing a model
as part of a RSS or ATOM feed (see Example 13-18).

Example 13-18. MediaTypeFormatter implementation
public class SyndicationMediaTypeFormatter : MediaTypeFormatter
{
  public const string Atom = "application/atom+xml";
  public const string Rss = "application/rss+xml";

  public SyndicationMediaTypeFormatter()
    : base()
  {
    this.SupportedMediaTypes.Add(new MediaTypeHeaderValue(Atom)); // <1>
    this.SupportedMediaTypes.Add(new MediaTypeHeaderValue(Rss));
  }

  public override bool CanReadType(Type type)
  {
    return false;
  }

  public override bool CanWriteType(Type type)
  {
    return true; // <2>
  }

  public override Task WriteToStreamAsync(Type type, object value, Stream
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  writeStream, HttpContent content, TransportContext transportContext) // <3>
  {
    var tsc = new TaskCompletionSource<AsyncVoid>(); // <4>
    tsc.SetResult(default(AsyncVoid));

    var items = new List<SyndicationItem>();

    if (value is IEnumerable)
    {
      foreach (var model in (IEnumerable)value)
      {
        var item = MapToItem(model);
        items.Add(item);
      }
    }
    else
    {
      var item = MapToItem(value);
      items.Add(item);
    }

    var feed = new SyndicationFeed(items);

    SyndicationFeedFormatter formatter = null;
    if (content.Headers.ContentType.MediaType == Atom)
    {
      formatter = new Atom10FeedFormatter(feed);
    }
    else if (content.Headers.ContentType.MediaType == Rss)
    {
      formatter = new Rss20FeedFormatter(feed);
    }
    else
    {
      throw new Exception("Not supported media type");
    }

    using (var writer = XmlWriter.Create(writeStream))
    {
      formatter.WriteTo(writer);

      writer.Flush();
      writer.Close();
    }

    return tsc.Task; // <5>
  }

  protected SyndicationItem MapToItem(object model) // <6>
  {
    var item = new SyndicationItem();
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    item.ElementExtensions.Add(model);

    return item;
  }

  private struct AsyncVoid
  {
  }
}

This implementation knows only how to serialize models according to the Atom and
RSS media type definitions, so that is explicitly specified as part of the constructor
<1>. It also returns true in the CanWrite method to specify that the implementation is
write only <2>.

The WriteToStreamAsync method implementation <3> mainly relies on the syndication
classes included with the WCF Web Programming model for serializing the models into
Atom or RSS feeds. This programming model provides classes for constructing a syn‐
dication feed and all the associated entries, as well as the formatter classes for trans‐
forming those into a well-known syndication format such as Atom or RSS.

As we stated, the WriteToStreamAsync and ReadFromStreamAsync methods leverage
the new Task Parallel Library for doing the asynchronous work. They both return a Task
instance that internally wraps the asynchronous work. However, most of the time, se‐
rialization is a safe operation that can be done synchronously. In fact, many of the
serializer classes you will find in the .NET Framework do their job synchronously. Cre‐
ating a new task using the method Task.Factory.StartNew for all the serialization work
would be the easiest thing to do, but there are some collateral effects associated with
that action. After we invoke the StartNew method, a new job is scheduled, which might
generate a thread context switch that hurts performance. The trick in this scenario is to
use a TaskCompletionSource <4>. The TaskCompletionSource is marked as complete
so all the work is done synchronously afterward, and the resulting task associated with
the TaskCompletionSource is returned <5> The method MapToItem <6> simply uses the
model instance as the content for a syndication item.

Synchronous Formatters
Most formatters are synchronous and use a TaskCompletionSource instance to return
a completed task. However, if you want to make your implementation simpler, there is
a base class, BufferedMediaTypeFormatter, that does all this for you internally. This
base class provides two methods that you can override in an implementation, SaveTo
Stream and ReadFromStream, which are the synchronous versions of SaveTo
StreamAsync and ReadFromStreamAsync, respectively.
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One more thing we might want to support in a formatter is the ability to negotiate the
media type from additional sources rather than the Accept header. This is a very com‐
mon requirement these days for clients where the HTTP client stack is not correctly
implemented (as happens with browsers in some older mobile devices). In those cases,
a client might want to provide the accepted media type in the query string, such as
http://…/Issues?format=atom. The MediaTypeFormatter supports this scenario
through the MediaMappings property, which represents a collection of MediaMapping
instances indicating the locations where the media type can be found, such as query
strings, headers, or URI segments. The framework provides several concrete imple‐
mentations of the MediaMapping abstract class for addressing the most common sce‐
narios. The following list provides a brief description of these mappings:
QueryStringMapping

This can be used to map the requested media type to a query string variable. For
example, the format variable in the URL http://localhost/issues?format=atom would
map to the atom media type.

UriPathExtensionMapping
This can be used to map a path in a URI to a media type. For example, http://
localhost/issues.atom would map the path .atom to the atom media type.

RequestHeaderMapping
This maps a request header to a media type. This would be useful in case you do
not want to use any of the standard HTTP request headers.

The media type mappings are injected in a formatter through the constructor.
Example 13-19 shows how the constructor was modified to use a QueryStringMap
ping instance for searching the media type as part of a query string.

Example 13-19. Media type mapping from query string
public const string Atom = "application/atom+xml";
public const string Rss = "application/rss+xml";

public SyndicationMediaTypeFormatter()
  : base()
{
  this.SupportedMediaTypes.Add(new MediaTypeHeaderValue(Atom));
  this.SupportedMediaTypes.Add(new MediaTypeHeaderValue(Rss));

  this.MediaTypeMappings
        .Add(new QueryStringMapping("format", "atom",
                new MediaTypeHeaderValue(Atom))); // <1>
}

If the formatter found a query string variable format with a value atom, that would be
mapped to the Atom media type (application/atom+xml) <1>.
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Default HttpParameterBinding Selection
By default, the model binding infrastructure will try to use FormatterParameterBind
er for complex type parameters, and ModelBindingParameterBinder for simple .NET
types. If you have multiple complex type arguments, the binding will fail unless you
explicitly specify that any of these arguments must be bound from the URL or the body
with the FromUriAttribute or FromBodyAttribute attributes, respectively. The From
BodyAttribute is another mechanism you can use to force the use of a FormatterPar
ameterBinder for a given parameter. If an action contains multiple complex parameters,
only one of them can be read from the request body via the FromBodyAttribute. Other‐
wise, the runtime will throw an exception.

Model Validation
Model validation is another feature that you get in Web API with the model binding
infrastructure. You can use this feature to either enforce business rules or to make sure
the data sent by a client is correct. As the model validation is performed in a single place
while the model is bound, this centralization results in code that’s easier to maintain
and test.

Another important aspect of model validation is to inform clients about any possible
errors in the data they sent with a chance to correct those errors. In practice, when this
aspect is not enforced, developers will simply stop adopting the API as part of their
applications.

As with all of the model binding infrastructure, model validation in ASP.NET Web API
is also completely extensible. The framework ships with a general-purpose validator
that uses attributes for validating the models. This validator works for most scenarios,
and reuses the data annotation attributes included in the System.ComponentModel.Da
taAnnotations namespace. Several validation attributes are provided out of the box in
that namespace—such as Required to mark a property as required or RegularExpres
sion to validate a property value with a regular expression. You are also free to create
your own custom data annotation attributes for use cases initially not covered by the
built-in ones.

Applying Data Annotation Attributes to a Model
Suppose we want have some validations applied to our issue model. We can start using
the data annotation attributes to decorate the model and enforce common validation
scenarios without having to write much code, and more importantly, without requiring
repetitive code. Example 13-20 shows how the issue model looks after we’ve applied
some data annotation attributes.
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Example 13-20. An issue model with data annotation attributes
public class Issue
{
  [DisplayName("Issue Id")]
  [Required(ErrorMessage = "The issue id is required")]
  [Range(1, 1000, ErrorMessage = "The unit price must be between {1} and {2}")]
  public int Id { get; set; }

  [DisplayName("Issue Name")]
  [Required(ErrorMessage = "The issue name is required")]
  public string Name { get; set; }

  [DisplayName("Issue Description")]
  [Required(ErrorMessage = "The issue description is required")]
  public string Description { get; set; }
}

All the properties in the model have been labeled with attributes that clearly state their
intention. Some properties, such as Name and Description, have been marked as re‐
quired, and the Id property has been marked to require a value within a given range.
The DisplayName attribute is not used for validation but affects how the output messages
are rendered.

Querying the Validation Results
Once the model binding infrastructure validates a model based on the attributes that
were defined on it, the results will become available to be used by a controller imple‐
mentation or in a more centralized manner with a filter.

Adding a few lines in an action implementation is by far the simplest way to check
whether the model has been correctly bound and all the validation results were suc‐
cessful (see Example 13-21).

Example 13-21. Checking the validation results in an action implementation
public class ValidationError
{
  public string Name { get; set; }
  public string Message { get; set; }
}

public class IssueController : ApiController
{
  public HttpResponseMessage Post(Issue product)
  {
    if(!this.ModelState.IsValid)
    {
       var errors = this.ModelState // <1>
                .Where(e => e.Value.Errors.Count > 0)
                .Select(e => new ValidationError // <2>
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                {
                    Name = e.Key,
                    Message = e.Value.Errors.First().ErrorMessage
                }).ToArray();

        var response = new HttpResponseMessage(HttpStatusCode.BadRequest);
        response.Content = new ObjectContent<ValidationError[]>(errors,
                new JsonMediaTypeFormatter());

        return response;
    }

    // Do something
  }
}

As illustrated in Example 13-21, all the validation results become available in a controller
action through the ModelState property <1>. In that example, the action simply converts
all the validation errors into a model class, ValidationError <2>, that we can serialize
into the response body as JSON, and returns that with a Bad Request status code.

This represents some generic code that you might want to reuse in multiple actions, so
probably the best way to do that is to move it to a custom filter. Example 13-22 shows
the same code in a filter implementation.

Example 13-22. ActionFilterAttribute implementation for doing validations
public class ValidationActionFilter : ActionFilterAttribute
{
    public override void OnActionExecuting(HttpActionContext actionContext)
    {
        if (!actionContext.ModelState.IsValid)
        {
          var errors = this.ModelState
                .Where(e => e.Value.Errors.Count > 0)
                .Select(e => new ValidationError
                {
                    Name = e.Key,
                    Message = e.Value.Errors.First().ErrorMessage
                }).ToArray();

          var response = new HttpResponseMessage(HttpStatusCode.BadRequest);
          response.Content = new ObjectContent<ValidationError[]>(errors,
                  new JsonMediaTypeFormatter());

          actionContext.Response = response;
        }
    }
}
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As you can see, the filter implementation is quite simple as well. When the filter detects
that the model is not valid, the execution pipeline is automatically interrupted and a
new response is sent to the consumer with the validation errors. If we send, for example,
a message with an empty product name and invalid unit price, we will get the response
shown in Example 13-23.

Example 13-23. Invalid request message and corresponding response message
Request Message in JSON

POST http://../Isssues HTTP/1.1
Content-Type: application/json

{
  Id: 1,
  "Name":"",
  "Description": "My issue"
}

Response Message

HTTP/1.1 400 Bad Request
Content-Type: text/plain; charset=utf-8

[{
  "Message": "The Issue Name is required.",
  "Name": "Name"
}]

Conclusion
The model binding infrastructure acts as a mapping layer between HTTP messages and
object instances known as models. It mainly relies on HttpParameterBinding compo‐
nents for doing the parameter binding to different HTTP message parts like headers,
query strings, or the body text. Two main implementations of HttpParameterBind
ing are shipped out of the box in the framework: a ModelBindingParameterBinder
implementation that uses the traditional binding mechanism brought from ASP.NET
MVC (in which the models are composed from small pieces found in the HTTP mes‐
sages), and a FormatterParameterBinder that uses formatters to convert a media type
format to a model.

The ModelBindingParameterBinder implementation uses IValueProvider instances
for collecting values from different parts in a HTTP message, and IModelBinder in‐
stances to compose all those values into a single model.

The FormatterParameterBinder implementation is a fundamental piece of content
negotiation, as it understands how to transform the body of an HTTP message expressed
with the semantics rules and format of a given media type into a model using formatters.
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A formatter derives from the base class MediaTypeFormatter and typically knows how
to manage a single media type. In addition to parameter binding, the model binding
infrastructure also offers an extensibility point for validating the models once they are
deserialized. The models are validated out of the box through rules defined as data
annotation attributes.
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CHAPTER 14

HttpClient

It is always easier to get a good result with good tools.

This chapter is a deeper exploration of the HttpClient library that is part of the Sys
tem.Net.Http library discussed in Chapter 10.

The first incarnation of HttpClient was bundled with the REST Starter Kit (RSK) on
CodePlex in early 2009. It introduced a number of concepts such as a request/response
pipeline, an abstraction for the HTTP payload that was distinct from the request/
response and strongly typed headers. Despite a big chunk of RSK making it into .NET
Framework 4.0, HttpClient itself did not. When the Web API project started in 2010,
a rewritten version of HttpClient was a core part of the project.

HttpClient Class
Simple things should be simple, and HttpClient tries to adhere to that principle. Con‐
sider the following:

var client = new HttpClient();
string rfc2616Text =
await client.GetStringAsync("http://www.ietf.org/rfc/rfc2616.txt");

In this example, a new HttpClient object is instantiated and an HTTP GET request is
made, and the content of the response is translated to a .NET string.

This apparently trivial piece of code provides sufficient context for us to discuss a range
of issues related to the usage of the HttpClient class.

Lifecycle
Although HttpClient does indirectly implement the IDisposable interface, the rec‐
ommended usage of HttpClient is not to dispose of it after every request. The
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HttpClient object is intended to live for as long as your application needs to make
HTTP requests. Having an object exist across multiple requests enables a place for set‐
ting DefaultRequestHeaders and prevents you from having to respecify things like
CredentialCache and CookieContainer on every request, as was necessary with
HttpWebRequest.

Wrapper
Interestingly, HttpClient itself does not do any of the dirty work of making HTTP
requests; it defers that job to an aggregated object that derives from HttpMessageHan
dler. The default constructor takes care of instantiating one of these objects. Alterna‐
tively, one can be passed in to the constructor, like this:

var client = new HttpClient((HttpMessageHandler) new HttpClientHandler());

HttpClientHandler uses the System.Net HttpWebRequest and HttpWebResponse
classes under the covers. This design provides the best possible outcome. Today, we get
a clean new interface to a proven HTTP stack, and tomorrow we can replace that
HttpClientHandler with some improved HTTP internals and the application interface
will not change. The implementation of HttpClientHandler uses a lowest common
denominator of the System.Net library to allow usage on multiple platforms like WinRT
and Windows Phone. As a result, certain features are not available, such as client cach‐
ing, pipelining, and client certificates, as they are dependent on the desktop operating
system. To use those features, it is necessary to do the following:

var handler = new WebRequestHandler {
                AuthenticationLevel = AuthenticationLevel.MutualAuthRequired,
                CachePolicy = new RequestCachePolicy(RequestCacheLevel.Default)
        };
var httpClient = new HttpClient(handler);

The WebRequestHandler class derives from HttpClientHandler but is deployed in a
separate assembly, System.Net.Http.WebRequest.

The reason that HttpClient implements IDisposable is to dispose the HttpMessage
Handler, which then attempts to close the underlying TCP/IP connection. This means
that creating a new HttpClient and making a new request will require creating a new
underlying socket connection, which is very expensive in comparison to just making a
request.

It is important to realize that if an instance of the HttpMessageHandler class is instan‐
tiated outside of the HttpClient and then passed to the constructor, disposing of the
HttpClient will render the handler unusable. If there is significant setup required to
configure the handler, you might wish to be able to reuse a handler across multiple
HttpClient instances. Fortunately, an additional constructor was added to support this
scenario:
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var handler = HttpHandlerFactory.CreateExpensiveHandler(};
var httpClient = new HttpClient(handler, disposeHandler:false);

Instructing HttpClient to not dispose the HttpMessageHandler allows the reuse of the
message handler across multiple HttpClient instances.

Multiple Instances
One reason that you might want to create multiple HttpClient instances is because
certain properties of HttpClient cannot be changed once the first request has been
made. These include:

public Uri BaseAddress
public TimeSpan Timeout
public long MaxResponseContentBufferSize

Thread Safety
HttpClient is a threadsafe class and can happily manage multiple parallel HTTP re‐
quests. If these properties were to be changed while requests were in progress, then it
might introduce bugs that are hard to track down.

These properties are relatively self-explanatory, but the MaxResponseContentBuffer
Size is worth highlighting. This property is of type long but is defaulted and limited to
the Int32.MaxValue, which is sufficiently large to start with for most scenarios. Fear
not, though: just because the size is set to 4GB, HttpClient will not allocate more
memory than is required to buffer the HTTP payload.

Beyond being a wrapper for the HttpMessageHandler, a host for configuration prop‐
erties, and a place for some logging messages, HttpClient also provides some helper
methods to make issuing common requests easy. These methods make HttpClient a
good replacement for System.Net.WebClient.

Helper Methods
The first example introduced GetStringAsync. Additionally, there are GetStreamAsync
and GetByteArrayAsync methods. All of the helper methods have the Async suffix to
indicate that they will execute asynchronously, and they all return a Task object. This
will also allow the use of async and await on platforms that support those keywords.
In .NET 4.5, it has become policy to expose methods that could take longer than 50
milliseconds as asynchronous only. This policy is intended to encourage developers to
take approaches that will not block an application’s user interface thread and therefore
create a more responsive application. Our example used the .Result property on the
returned task to block the calling thread and return the string result. This approach
circumvents the recommended policy and comes with some dangers that will be ad‐
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dressed later in this chapter. However, for simplicity’s sake, we’ll use the .Result short‐
cut to simulate a synchronous request.

Peeling Off the Layers
The helper methods are handy but provide little insight into what is going on under the
covers. If we remove one layer of simplification we have the GetAsync method, which
can be used as follows:

var client = new HttpClient();
HttpResponseMessage response;
response = await client.GetAsync("http://www.ietf.org/rfc/rfc2616.txt");
HttpContent content = response.Content;
string rfc2616Text = await content.ReadAsStringAsync();

In this example, we now get access to the response object and the content object. These
objects allow us to inspect metadata in the HTTP headers to guide the process of con‐
suming the returned content.

Completed Requests Don’t Throw
The HttpClient behavior is different than HttpWebRequest in that, by default, no com‐
pleted HTTP responses will throw an exception. An exception may be thrown if some‐
thing fails at the transport level; however, unlike HttpWebRequest, status codes like 3XX,
4XX, and 5XX do not throw exceptions. The IsSuccessStatusCode property can be used
to determine if the status code is a 2xx, and the EnsureSuccessStatusCode method can
be used to manually trigger an exception to be thrown if the status code is not successful.

The status codes returned in response to an HTTP request often can be handled directly
by application code and therefore do not warrant throwing an exception. For example,
we can handle many 3xx responses automatically by making a second request to the
URI specified in the location header. Error 503 Service Unavailable can apply a retry
mechanism to ensure temporary interruptions are not fatal to the application. Later in
this chapter, there will be further discussion about building clients that intelligently react
to HTTP status codes.

Content Is Everything
The HttpContent class is an abstract base class that comes with a few implementations
in the box. HttpContent abstracts away the details of dealing with the bytes that need
to be sent over the wire. HttpContent instances deal with the headaches of flushing and
positioning streams, allocating and deallocating memory, and converting CLR types to
bytes on the wire. They provide access to the HTTP headers that are specifically related
to the HTTP payload.
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You can access the content of an HttpContent object using the ReadAs methods dis‐
cussed in Chapter 10. Although the HttpContent abstraction does shield you from most
of the nasty details about reading bytes over the wire, there is one key detail that is not
immediately apparent and is worth understanding. A number of the methods on
HttpClient have a completionOption parameter. This parameter determines whether
the asynchronous task will complete as soon as the response headers have been received
or whether the complete response body will be completely read into a buffer first.

There are a couple reasons why you might want to have the task complete as soon as
the headers are retrieved:

• The media type of the response may not be understood by the client, and where
networks are metered, downloading the bytes may be a waste of time and money.

• You may wish to do processing work based on the response headers in parallel to
downloading the content.

The following code is a hypothetical example of how this feature could be used:

var httpClient = new HttpClient();
httpClient.BaseAddress = new Uri("http://www.ietf.org/rfc/");
var tcs = new CancellationTokenSource();

var response = await httpClient.GetAsync("rfc2616.txt",
        HttpCompletionOption.ResponseHeadersRead, tcs.Token);
// Headers have been returned

if (!IsSupported(response.Content.ContentType)) {
        tcs.Cancel();
        return;
}
UIManager userInterfaceManager = new UIManager();

// Start building up the right UI based on the content-type
userInterfaceManager.PrepareTheUI(content.ContentType);

// Start pulling the payload data across the wire
var payload = await response.Content.ReadAsStreamAsync()

// Payload has been completely retrieved
userInterfaceManager.Display(payload);

To implement this technique, the UIManager has to do some thread synchronization
because the Display method will likely be called on a different thread than Prepare
TheUI, and the Display method will probably need to wait until the UI is ready. Some‐
times the extra effort is worth the performance gain of being able to effectively do two
things at once. Obviously, this technique is not much use if your client can’t determine
what you are trying to display without parsing the payload.
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Cancelling the Request
The last parameter to discuss on the GetAsync method is the CancellationToken. Cre‐
ating a CancellationToken and passing it to this method allows calling objects the
opportunity to cancel the Async operation. Be aware that cancelling an operation will
cause the Async operation to throw an exception, so be prepared to catch it.

The following example cancels a request if it does not complete within one second. This
illustrates the use of Cancel only, as HttpClient has a built-in timeout mechanism:

[Fact]
        public async Task RequestCancelledByCaller()
        {
            Exception expectedException = null;

            bool done = false;

            var httpClient = new HttpClient();
            var cts = new CancellationTokenSource();

            var backgroundRequest = new TaskFactory().StartNew(async () =>
            {
                try
                {
                    var request = new HttpRequestMessage()
                    {
                        RequestUri = new Uri("http://example.org/largeResource")
                    };

                    var response = await httpClient.SendAsync(request,
                        HttpCompletionOption.ResponseHeadersRead, cts.Token);

                    done = true;
                }
                catch (TaskCanceledException ex)
                {
                    expectedException = ex;
                }
            }, cts.Token);

            // Wait for it to finish
            Thread.Sleep(1000);

            if (!done)
                cts.Cancel();

            Assert.NotNull(expectedException);
        }
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SendAsync
All of the HttpClient methods we have covered so far are just wrappers around the
single method SendAsync, which has the following signature:

  public Task<HttpResponseMessage> SendAsync(
        HttpRequestMessage request,
        HttpCompletionOption completionOption,
        CancellationToken cancellationToken)

By creating an HttpRequestMessage and setting the Method property and the Content
property, you can easily replicate the behavior of the helper methods using SendAsync.
However, the HttpRequestMessage can be used only once. After the request is sent, it
is disposed immediately to ensure that any associated Content object is disposed. In
many cases this shouldn’t be necessary; however, if an HttpContent object were wrap‐
ping a forward-only stream it would not be possible to resend the content without
reinitializing the stream, and the HttpContent class does not have any such interface.
Introducing a link class as a request factory (as we did in Chapter 9) is one way to work
around this limitation:

var httpClient = new HttpClient();
httpClient.BaseAddress = new Uri("http://www.ietf.org/rfc/");

var request = new HttpRequestMessage() {
        RequestUri = new Uri("rfc2616.txt"),
        Method = HttpMethod.Get
}
var response = await httpClient.SendAsync(request,
        HttpCompletionOption.ResponseContentRead, new CancellationToken());

The SendAsync method is a core piece of the architecture of both HttpClient and Web
API. SendAsync is the primary method of HttpMessageHandler, which is the building
block of request and response pipelines.

Client Message Handlers
Message handlers are one of the key architectural components in both HttpClient and
Web API. Every request and response message, on both client and server, is passed
through a chain of classes that derive from HttpMessageHandler. In the case of
HttpClient, by default there is only one handler in the chain: the HttpClientHan
dler. You can extend the default behavior by inserting additional HttpMessageHan
dler instances at the begining of the chain, as Example 14-1 demonstrates.

Example 14-1. Adding a handler to the client request pipeline
  var customHandler = new MyCustomHandler()
        { InnerHandler = new HttpClientHandler()};
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  var client = new HttpClient(customHandler);

  client.GetAsync("http://example.org",content);

The code in Example 14-1 creates an object graph that looks like Figure 14-1.

Figure 14-1. Extensibility with HttpMessageHandlers

Multiple message handlers can be chained together to compose additional functionality.
However, the base HttpMessageHandler does not have a built-in chaining capability. A
derived class, DelegatingHandler, provides the InnerHandler property to support
chaining.

Example 14-2 shows how you can use a message handler to allow a client to use the PUT
and DELETE methods against a server that does not support those methods and requires
the use of the X-HTTP-Method-Override header.

Example 14-2. HttpMethodOverrideHandler
public class HttpMethodOverrideHandler: DelegatingHandler
    {
        protected override Task<HttpResponseMessage> SendAsync(
                HttpRequestMessage request,
                System.Threading.CancellationToken cancellationToken)
        {
            if (request.Method == HttpMethod.Put)
            {
                request.Method = HttpMethod.Post;
                request.Headers.Add("X-HTTP-Method-Override", "PUT");
            }
            if (request.Method == HttpMethod.Delete)
            {
                request.Method = HttpMethod.Post;
                request.Headers.Add("X-HTTP-Method-Override", "DELETE");
            }
            return base.SendAsync(request, cancellationToken);
        }
    }
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Another class derived from DelegatingHandler, called MessageProcessingHandler
(see Example 14-3), makes it even easier to create these handlers as long as the custom
behavior will not need to do any long-running work that would require asynchronous
operations.

Example 14-3. MessageProcessingHandler
   public class HttpMethodOverrideMessageProcessor : MessageProcessingHandler {

        protected override HttpRequestMessage ProcessRequest(
                HttpRequestMessage request,
                CancellationToken cancellationToken) {

            if (request.Method == HttpMethod.Put)
            {
                request.Method = HttpMethod.Post;
                request.Headers.Add("X-HTTP-Method-Override", "PUT");
            }
            if (request.Method == HttpMethod.Delete)
            {
                request.Method = HttpMethod.Post;
                request.Headers.Add("X-HTTP-Method-Override", "DELETE");
            }
            return request;
        }

        protected override HttpResponseMessage ProcessResponse(
                HttpResponseMessage response,
                CancellationToken cancellationToken) {
            return response;
        }
    }

When using these message handlers to extend functionality, you should be aware that
they will often execute on a different thread than the thread that issued the request. If
the handler attempts to switch back onto the requesting thread—for example, to get
back onto the UI thread to update some user interface control—then there is a risk of
deadlock. If the original request is blocking, waiting for the response to return, then a
deadlock will occur. You can avoid this problem when using the .NET 4.5 async
await mechanism, but it is a very good reason to avoid using .Result to simulate
synchronous requests.

Proxying Handlers
There are many potential uses of HttpMessageHandlers. One is to act as a proxy for
manipulating outgoing requests. The following example shows a proxy for the Runscope
debugging service:
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    public class RunscopeMessageHandler : DelegatingHandler
    {
        private readonly string _bucketKey;

        public RunscopeMessageHandler(string bucketKey,
                HttpMessageHandler innerHandler)
        {
            _bucketKey = bucketKey;
            InnerHandler = innerHandler;
        }

        protected override Task<HttpResponseMessage> SendAsync(
                HttpRequestMessage request,
                CancellationToken cancellationToken)
        {
            var requestUri = request.RequestUri;
            var port = requestUri.Port;

            request.RequestUri = ProxifyUri(requestUri, _bucketKey);
            if ((requestUri.Scheme == "http" && port != 80 )
                    ||  requestUri.Scheme == "https" && port != 443)
            {
                request.Headers.TryAddWithoutValidation(
                    "Runscope-Request-Port", port.ToString());
            }
            return base.SendAsync(request, cancellationToken);
        }

                private Uri ProxifyUri(Uri requestUri,
                                string bucketKey,
                                string gatewayHost = "runscope.net")
        {
         ...
        }
   }

In this scenario, the request URI is modified to point to the proxy instead of the original
resource.

Fake Response Handlers
You can use message handlers to assist with testing client code. If you create a message
handler that looks like the following:

public class FakeResponseHandler : DelegatingHandler
    {
        private readonly Dictionary<Uri, HttpResponseMessage> _FakeResponses
            = new Dictionary<Uri, HttpResponseMessage>();

        public void AddFakeResponse(Uri uri, HttpResponseMessage responseMessage)
        {
                _FakeResponses.Add(uri,responseMessage);
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        }

        protected async override Task<HttpResponseMessage> SendAsync(
                HttpRequestMessage request,
                CancellationToken cancellationToken)
        {
            if (_FakeResponses.ContainsKey(request.RequestUri))
            {
                return _FakeResponses[request.RequestUri];
            }
            else
            {
                return new HttpResponseMessage(HttpStatusCode.NotFound)
                    { RequestMessage = request};
            }

        }
    }

you can use it as a replacement for the HttpClientHandler:

[Fact]
public async Task CallFakeRequest()
{
    var fakeResponseHandler = new FakeResponseHandler();
    fakeResponseHandler.AddFakeResponse(
        new Uri("http://example.org/test"),
        new HttpResponseMessage(HttpStatusCode.OK));

    var httpClient = new HttpClient(fakeResponseHandler);

    var response1 = await httpClient.GetAsync("http://example.org/notthere");
    var response2 = await httpClient.GetAsync("http://example.org/test");

    Assert.Equal(response1.StatusCode,HttpStatusCode.NotFound);
    Assert.Equal(response2.StatusCode, HttpStatusCode.OK);
}

In order to test client-side services, you must ensure that they allow an HttpClient
instance to be injected. This is another example of why it is better to share an HttpClient
instance rather than instantiating on the fly, per request. The FakeResponseHandler
needs to be prepopulated with the responses that are expected to come over the wire.
This setup allows the client code to be tested as if it were connected to a live server:

[Fact]
public async Task ServiceUnderTest()
{
    var fakeResponseHandler = new FakeResponseHandler();
    fakeResponseHandler.AddFakeResponse(
            new Uri("http://example.org/test"),
            new HttpResponseMessage(HttpStatusCode.OK)
                    {Content = new StringContent("99")});
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    var httpClient = new HttpClient(fakeResponseHandler);

    var service = new ServiceUnderTest(httpClient);
    var value = await service.GetTestValue();

    Assert.Equal(value, 99);
}

Creating Resuable Response Handlers
In Chapter 9, we discussed the notion of reactive clients that decoupled the response
handling from the context of the request.

Message handlers and the HttpClient pipeline are a natural fix for achieving this goal,
and have the side effect of simplifying the process of making requests.

Consider the message handler shown in Example 14-4.

Example 14-4. Pluggable response handler
 public abstract class ResponseAction
    {
        abstract public bool ShouldRespond(
                ClientState state,
                HttpResponseMessage response);

        abstract public HttpResponseMessage HandleResponse(
                    ClientState state,
                    HttpResponseMessage response);
    }

public class ResponseHandler : DelegatingHandler
    {
         private static readonly List<ResponseAction> _responseActions
                = new List<ResponseAction>();

        public void AddResponseAction(ResponseAction action)
        {
            _responseActions.Add(action);
        }

        protected override Task<HttpResponseMessage> SendAsync(
                HttpRequestMessage request,
                CancellationToken cancellationToken)
        {
            return base.SendAsync(request, cancellationToken)
                .ContinueWith<HttpResponseMessage>(t =>
                     ApplyResponseHandler(t.Result));
        }

350 | Chapter 14: HttpClient



        private HttpResponseMessage ApplyResponseHandler(
                    HttpResponseMessage response)
        {

            foreach (var responseAction in _responseActions)
            {
                if (responseAction.ShouldRespond(response))
                {
                    var response = responseAction.HandleResponse(response);
                    if (response == null) break;
                }
            }
            return response;
        }
    }

In this example, we have created a delegating handler that will dispatch responses to a
particular ResponseAction class if ShouldRespond returns true. This mechanism al‐
lows an arbitrary number of response actions to be defined and plugged in. The Shoul
dRespond method’s role can be as simple as looking at the HTTP status code, or it could
be far more sophisticated, looking at content type or even parsing the payload looking
for specific tokens.

Making HTTP requests then gets simplified to what you see in Example 14-5.

Example 14-5. Using response handlers
var responseHandler = new ResponseHandler()
        {InnerHandler = new HttpClientHandler()};

responseHandler.AddAction(new NotFoundHandler());
responseHandler.AddAction(new BadRequestHandler());
responseHandler.AddAction(new ServiceUnavailableRetryHandler());
responseHandler.AddAction(new ContactRenderingHandler());

var httpClient = new HttpClient(responseHandler);

httpClient.GetAsync("http://example.org/contacts");

Conclusion
HttpClient is a major step forward in the use of HTTP on the .NET platform. We get
an interface that is as easy to use as WebClient but with more power and configurability
than HttpWebRequest/HttpWebResponse. The same interface will support future pro‐
tocol implementations. Testing is easier, and the pipeline architecture allows us to apply
many cross-cutting concerns without complicating the usage.
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CHAPTER 15

Security

The cowl does not make the monk.

In the broadest sense, the security of computer systems encompasses many subjects and
techniques, ranging from encryption schemes to availability and disaster recovery sys‐
tems. However, it is not the goal of this chapter to discuss such a wide range of themes.
Instead, we’ll focus our attention on the security aspects that are more specific to Web
APIs—in particular, transport security, authentication, and authorization. So, in the
following sections we will be addressing these subjects, from both theoretical and prac‐
tical viewpoints, using ASP.NET Web API as the supporting technology.

This chapter is complemented by the following chapter, which will focus solely on the
OAuth 2.0 Framework: a set of protocols and patterns addressing access control in
HTTP-based APIs.

Transport Security
The confidentiality and integrity of transferred information are important security re‐
quirements that must be addressed when you are designing and implementing dis‐
tributed systems. Unfortunately, the HTTP protocol provides little support in this area.
For this reason, the common practice among developers is to address these require‐
ments by using HTTP on top of a secure transport layer, as defined by RFC 1818, “HTTP
Over TLS,” resulting in what is informally known as HTTPS. Briefly, this specification
states that when a client performs an HTTP request to a URI with the https scheme
(e.g., https://www.example.net), then the HTTP protocol is layered on top of a secure
transport (TLS or SSL) instead of directly over TCP, as depicted in Figure 15-1. This
way, both the request and the response message bytes are protected by the transport
protocol while being transferred between two transport endpoints.
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1. In the remainder of this chapter, we will refer to both these protocols as TLS.

The Transport Layer Security protocol (TLS), defined by RFC 5246, is an evolution of
the Secure Socket Layer protocol (SSL).1 Both these protocols aim to provide a secure
bidirectional connection between two communicating entities, usually called peers, with
the following properties:
Integrity

Each peer has the assurance that the received byte stream is equal to the byte stream
transmitted by the remote peer. Any modifications to this stream by a third party,
including replays, are detected and the connection is terminated.

Confidentiality
Each peer has the guarantee that the sent byte stream will be visible only to the
remote peer.

Figure 15-1. The https scheme and transport security

In addition to the integrity and confidentiality assurances, the TLS protocol can also
perform peer authentication, providing the client or the server with the verified identity
of the remote peer. Very importantly, when used in the HTTP context, TLS is also
responsible for the fundamental task of server authentication, providing the client with
the server’s verified identity before the client sends any request message. We will address
TLS-based authentication in more detail in the section “Authentication” on page 358.

The TLS protocol is itself divided into two major subprotocols. The record subproto‐
col provides the integrity and confidentiality properties, using symmetric encryption
schemes and message authentication codes (MAC) to protect the exchanged byte
stream. It operates over a reliable transport protocol (e.g., TCP), and is composed of
three different layers. The first one divides the incoming stream into records, each one
with a maximum length of 16 KB. The second layer applies compression to each one of
these records. The last layer applies the cryptographic protection, using a MAC-then-
Encrypt design: first a MAC is computed over the compressed record concatenated with
a sequence number; then both the compressed record and the MAC value are encrypted.
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The handshake subprotocol is used to establish the TLS operation parameters, namely
the cryptographic material used by the record subprotocol (e.g., encryption and MAC
keys). It supports multiple key establishment techniques. However, in the web context,
the most common ones are based on the use of public-key cryptography and certificates.
In Appendix G, we present a brief introduction to this subject and also show how to
create keys and certificates to use in development environments.

Using TLS in ASP.NET Web API
The TLS protocol operates on top of the transport layer, meaning that it is implemented
by the low-level HTTP hosting infrastructure, which on Windows is the kernel-mode
HTTP.SYS driver. As a consequence, most of its related configuration is done outside
of ASP.NET Web API and also differs between IIS hosting and self-hosting.

Using TLS with IIS Hosting
On IIS, TLS is configured through the addition of an HTTPS binding to a site, as illus‐
trated in Figure 15-2.

Figure 15-2. Adding an HTTPS binding to a site

This addition is configured by the server’s certificate, which must be installed in the
Personal store of the Local Computer location, have an associated private key, and also
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have a valid certification path to a trusted root certification authority. No further changes
are required on the IIS configuration or on the Web API configuration.

Figure 15-3 shows the user interface presented by a browser performing a request via
HTTPS. Notice that the presented information includes both the server’s identity
(www.example.net) and the certification authority name (“Demo Certification Author‐
ity”).

Figure 15-3. Accessing ASP.NET Web API using HTTPS

In IIS 7.5, multiple sites may have HTTP bindings configured for the same IP address
and port, since the request demultiplexing (dispatching the request for the selected site)
uses the hostname present in the Host header. However, it is not possible to have multiple
HTTPS bindings with different certificates configured for the same IP address and port
(because the server certificate is needed when the TLS connection is established, well
before the HTTP request is received). So, when hosting multiple HTTPS sites on the
same server, the alternatives are:

• Use a different IP address or port for each HTTPS binding.
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• Use the same certificate for all bindings, which typically implies using wildcards in
the certificate’s subject name. Alternatively, the Subject Alternative Name extension
can be used to define multiple subject names for the same certificate.

Subject Alternative Names
The X.509 certificate specification includes an extension field named Subject Alternative
Name, allowing for the inclusion of one or more subject names in a single certificate.
For instance, at the time of writing, a connection to https://www.google.com uses a server
X.509 certificate with 44 alternative names, including: *.google.com, *.android.com,
*.google.com.ar, *.google.ca, and *.google.pt.

RFC 4366 defines a new TLS extension, named Server Name Indication (SNI), which
adds the name of the HTTP host into the TLS initial handshake. This extra information
allows the server to use a different certificate for each hostname, even if the TCP con‐
nection is established for the same IP address and port. Unfortunately, this extension is
supported by IIS 8.0 and greater versions but not by IIS 7.5 or previous versions.

Using TLS with Self-Hosting
When you are using self-hosting, TLS is configured using the netsh command-line tool:

netsh http add sslcert ipport=0.0.0.0:port certhash=thumbprint appid={app-guid}

where:

• ipport is the listening IP address and port (the special 0.0.0.0 IP address matches
any IP address for the local machine).

• certhash is the server certificate SHA-1 hash value, represented in hexadecimal.
• appid is just a GUID used to identify the owning application.

The chosen server certificate has the same requirements as when you are hosting on
IIS, namely that it must be installed in the Personal store of the Local Computer location,
have an associated private key, and also have a valid certification path to a trusted root.
The only change required on the ASP.NET Web API configuration is the usage of the
https scheme in the self-host listening address:

var config = new HttpSelfHostConfiguration("https://www.example.net:8443");

This concludes the section on transport security. In the next section, we will address
authentication.
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Authentication
According to RFC 4949 (Internet Security Glossary), authentication is “The process of
verifying a claim that a system entity or system resource has a certain attribute value.”
In the context of HTTP, the two obvious system entities are the client and the server,
and this attribute verification is typically required by both these entities.

On one side, server authentication is required to preemptively ensure clients that request
messages are sent only to correct origin servers—that is, the servers on which the iden‐
tified resources reside or should be created. In this case, the message sender needs to
authenticate the message receiver before sending the message, typically by authenticat‐
ing the other side of the transport connection. Server authentication is also needed to
check if the received response messages were indeed produced by the correct servers.
Since clients are interacting with resources identified by http URIs, the main attribute
checked by this authentication process is the possession of the URI’s hostname (an IP
address or DNS name).

On the other side, client authentication provides servers with identity information used
to decide if the request message should be authorized—that is, if the requested methods
can be applied to the identified resources. In this case, the attributes verified by the
authentication process are more context dependent, and may range from simple opaque
identifiers, such as usernames, to rich collections of attributes, such as emails, names,
roles, addresses, and banking and social security numbers.

As we will see in the following sections, these authentication requirements can be ac‐
complished at two levels:

• At the transport level, by sending and receiving HTTP messages over secure con‐
nections

• At the message level, by attaching security information to the messages in order to
authenticate its origin

However, before presenting the details of these authentication mechanisms, we will first
address how identity—that is, the output of the authentication process—can be repre‐
sented in the .NET Framework.

The Claims Model
Since version 1.0, the .NET Framework contains two interfaces to represent identities,
shown in Figure 15-4: IPrincipal and IIdentity. The IPrincipal interface “repre‐
sents the security context of the user on whose behalf the code is running.” For instance,
in the HTTP request handling context, this interface represents the request message
producer—the HTTP client. This interface contains an IsInRole method, used to query
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if the requester has a given role, and an Identity property, of type IIdentity. This last
interface represents an identity via three properties:

• The AuthenticationType string
• The Name string
• The IsAuthenticated string

Figure 15-4. The IPrincipal and IIdentity interfaces

The current principal (i.e., the object representing the security context of the user on
whose behalf the current code is running), can be accessed via the Thread.Current
Principal static property. This information is also accessible via more context-specific
properties, such as the ASP.NET MVC System.Web.Mvc.Controller.User property or
WCF’s System.ServiceModel.ServiceSecurityContext.PrimaryIdentity. In the
ASP.NET Web API context, this role is played by the ApiController.User property,
also containing an IPrincipal.

The .NET Framework also contains a set of concrete classes implementing the IPrin
cipal and IIdentity interfaces:

• The GenericPrincipal, WindowsPrincipal, and RolePrincipal classes imple‐
ment the IPrincipal interface.

• The GenericIdentity, WindowsIdentity, and FormsIdentity classes implement
the IIdentity interface.

However, the previous model uses a rather limited view of what an identity can be,
reducing it to a simple string and a role query method. Also, this model assumes an
implicit identity authority, which does not fit a world where identity information can
be provided by multiple providers, ranging from social sites to organizational directo‐
ries.

The claims model aims to overcome these limitations by defining a new way of repre‐
senting identities, based on the claim concept. A Guide to Claims-Based Identity and
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Access Control (Microsoft Patterns & Practices) defines a claim as a “statement, such as
a name, identity, key, group, permission or capability made by one subject about itself
or another subject.” We’ll highlight two characteristics of this definition. First, this def‐
inition is broad enough to allow different identity attributes, ranging from simple name
identifiers to authorization capabilities. Second, it makes explicit that claims can be
issued by multiple parties, including the identified subject (self-issued claims).

With version 4.5, the .NET Framework adopted this claims model to represent identities
and introduced the System.Security.Claims namespace, which contains several
classes associated with this model. The Claim class, depicted in Figure 15-5, is composed
of three core properties:

• Issuer is a string identifying the authority that asserted the identity claim.
• Type is a string characterizing the claim type.
• Value contains the claim value, also represented as a string.

Figure 15-5. The Claim and ClaimsIdentity classes

The following code excerpt illustrates the three Claim core properties, for a claim ob‐
tained from the process’s Windows identity:

[Fact]
public void Claims_have_an_issuer_a_type_and_a_value()
{
    AppDomain.CurrentDomain.SetPrincipalPolicy(
        PrincipalPolicy.WindowsPrincipal);
    var identity = Thread.CurrentPrincipal.Identity as ClaimsIdentity;
    Assert.NotNull(identity);
    var nameClaim = identity.Claims
        .First(c => c.Type == ClaimsIdentity.DefaultNameClaimType);
    Assert.Equal(identity, nameClaim.Subject);

    Assert.Equal("AD AUTHORITY", nameClaim.Issuer);
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    Assert.Equal(ClaimTypes.Name, nameClaim.Type);
    Assert.Equal(
        "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name",
        nameClaim.Type);
    Assert.True(nameClaim.Value.EndsWith("pedro"));
}

The ClaimTypes class contains a set of commonly used claim type identifiers:

public static class ClaimTypes
{
    public const string Role = "http://schemas.microsoft.com/.../claims/role";
    public const string AuthenticationInstant = ...
    public const string AuthenticationMethod = ...
    public const string AuthorizationDecision = ...
    public const string Dns = ...
    public const string Email = ...
    public const string MobilePhone = ...
    public const string Name = ...
    public const string NameIdentifier = ...
    // other members elided for readability
}

NET Framework 4.5 also introduced two new claims-based concrete classes:

• The ClaimsIdentity class, also shown in Figure 15-5, represents an identity as a
claim sequence.

• The ClaimsPrincipal class represents a principal as one or more claims-based
identities.

Note that these new classes also implement the old IPrincipal and IIdentity inter‐
faces, meaning they can be used with legacy code. In addition, the old concrete principal
and identity classes, such as WindowsPrincipal or FormsIdentity, were also retrofitted
to derive from these new claims-based classes, as shown in Figure 15-6.
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Figure 15-6. The ClaimsPrincipal and ClaimsIdentity classes

For the remainder of this chapter, we will be using the new claims-based classes to
represent identities.

Windows Identity Foundation and the .NET Framework
The class model for claims-aware applications was initially introduced in 2009 as an
extension to the .NET platform, called Windows Identity Foundation. This class model
was mostly contained in the Microsoft.IdentityModel namespace. Starting with ver‐
sion 4.5, this class model became an integral part of the .NET Framework. This intro‐
duced some breaking changes, namely the migration to the System namespace.
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In distributed systems, the source for the identity information and the party interested
in it may not be the same. In these contexts, it is important to distinguish these two
parties:

• An identity provider is an entity that issues identity claims about a subject, typically
containing information for which it is authoritative or that it has verified.

• A relying party is an entity that uses (i.e., consumes or relies on) identity claims
issued by an identity provider.

Figure 15-7 shows the relations between these two parties. The task of a distributed
authentication protocol, such as WS-Federation, is to provide the mechanisms for:

• A relying party to request identity claims about a subject to an identity provider
• The identity provider to issue and make these claims available to the requesting

relying party

Figure 15-7. Identity providers and relying parties

Retrieving and Assigning the Current Principal
In the early days of the .NET Framework, the retrieving and assignment of the cur‐
rent principal was performed via the Thread.CurrentPrincipal static property. How‐
ever, currently this technique presents two problems. First, a request isn’t necessarily
executed by a single thread. Specifically, the broad adoption of asynchronous program‐
ming models means that the affinity between a request and its single executing thread
doesn’t exist anymore. Secondly, several .NET Framework components, such as
ASP.NET and WCF, created alternative ways to access and define this information. As
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an example, in ASP.NET, the HttpContext class contains a User static property holding
an IPrincipal. This increases the probability of incoherence between the identities
present in these multiple places.

In version 1.0 of ASP.NET Web API, the correct way of assigning the current principal
inside the message handler pipeline depends on the used host. When you are self-
hosting, it is sufficient to assign the Thread.CurrentPrincipal. However, when using
the web host, you must assign both the Thread.CurrentPrincipal and the HttpCon
text.Current.User. A commonly used technique is to check if HttpContext.Cur
rent isn’t null:

Thread.CurrentPrincipal = principalToAssign;
if (HttpContext.Current != null)
{
    HttpContext.Current.User = principalToAssign;
}

Unfortunately, this technique creates a dependency to the System.Web assembly, even
in the self-host scenario.

In ASP.NET Web API version 2.0, you can solve this problem by using the new HttpRe
questContext class. First, the current identity should be retrieved and assigned to the
current request object, not to a static property. Secondly, different hosts can use different
HttpRequestContext implementations:

• The self-host uses the SelfHostHttpRequestContext, which simply assigns the
Thread.CurrentPrincipal property.

• The web host uses the WebHostHttpRequestContext, which assigns both the
Thread.CurrentPrincipal and the HttpContext.User properties.

• Finally, the OWIN host uses the OwinHttpRequestContext, which assigns both the
Thread.CurrentPrincipal and the current OWIN context.

Unfortunately, there isn’t a way that works for both versions of Web API. In the re‐
mainder of this book, we will primarily use the version 2.0 method.

Transport-Based Authentication
As we stated previously in this chapter, the TLS protocol can also be used to perform
authentication, providing each transport peer with the verified identity of the remote
peer. In the following sections, we show how to use this feature to obtain both server
authentication and client authentication.
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Server Authentication
When a client sends an HTTP request with an https request URI, the used connection
must always be protected by TLS or SSL, ensuring the integrity and confidentiality of
the sent message. In addition, the client must check the server identity by comparing
the URI hostname with the identity present in the server’s certificate, received during
the handshake negotiation. This verification solves the server authentication problem
by ensuring that an HTTP request message is sent only to a properly identified server.

The server’s identity is obtained from the certificate in one of two ways:

• If the certificate contains a subject alternative name extension of type DNS name,
then its value is used.

• Otherwise, the common name in the certificate subject field is used instead.

If the subject alternative name extension contains multiple names, then the URI host‐
name can match any of them. This feature allows the use of the same certificate for
different hostnames (e.g., www.example.net and api.example.net), which is very use‐
ful when these hostnames are bound to the same IP address. For instance, until version
7.5 of IIS, different https bindings that use the same IP and port must use the same
certificate.

The name in the server’s certificate can also contain wildcards (e.g., *.example.net).
As an example, the hostname www.example.net is matched by *.example.net. This
feature is useful in multitenancy scenarios, where the set of hostnames is not known in
advance, namely when the server’s certificate is issued. As an example, currently the
Azure Service Bus uses a certificate containing two alternative names: *.service
bus.windows.net and servicebus.windows.net. This allows a hostname such as my-
tenant-name.servicebus.windows.net to be matched by this certificate.

Currently, TLS-based server authentication is based on the PKI trust model described
in Appendix G, where the overall security depends on the correct behavior of a set of
certificate authorities. Unfortunately, this model presents a rather significant surface
area for MITM (man-in-the-middle) attacks. For instance, if a certificate authority’s
(CA) name verification practices are compromised, an attacker can obtain certificates
that bind public keys under his control to names that he does not own. The same con‐
sequence can result if the attacker is able to use the CA private keys to issue rogue
certificates.

This problem is amplified by the high number of trusted root certification authorities
configured by default on several platforms. As an example, the list of root certificates
used by the Mozilla projects (e.g., the Firefox browser) has more than 150 different
entries. Note that if any of these certificate authorities is compromised, then a MITM
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attack can be mounted against any server, even if its certificate is not issued by the
compromised authority.

A solution to this security problem is the addition of extra contextual requirements to
the server certificate validation process. One of these extra requirements is called cer‐
tificate pinning, where the certificates in the chain are compared with a fixed set of
known certificates, called the pinset. In scenarios where the first interaction of a client
with a server is guaranteed to be safe from MITM attacks, the certificate chain presented
by the server can be used to build the pinset. The rationale behind this choice is based
on the low probability of a server changing the root authority that it uses.

Another choice is to use a static context-based pinset. As an example, the Chromium
browser limits the CAs that can be used when users connect to the Gmail and Google
account servers. Another example is the Twitter API security best practices, which state
that any client application should ensure that the certificate chain returned by the Twit‐
ter servers contains a subset of the approved CAs.

When using HttpClient, you can enforce certificate pinning by using the
WebRequestHandler client handler and a custom certificate validation callback, as
shown in the following example:

private readonly CertThumbprintSet verisignCerts = new CertThumbprintSet(
    "85371ca6e550143dce2803471bde3a09e8f8770f",
    "62f3c89771da4ce01a91fc13e02b6057b4547a1d",

    "4eb6d578499b1ccf5f581ead56be3d9b6744a5e5",
    "5deb8f339e264c19f6686f5f8f32b54a4c46b476"
    );

[Fact]
public async Task Twitter_cert_pinning()
{
    var wrh = new WebRequestHandler();
    wrh.ServerCertificateValidationCallback =
        (sender, certificate, chain, errors) =>
        {
            var caCerts = chain.ChainElements
                .Cast<X509ChainElement>().Skip(1)
                .Select(elem => elem.Certificate);

            return errors == SslPolicyErrors.None &&
                   caCerts.Any(cert =>
                    verisignCerts.Contains(cert.GetCertHashString()));
        };

    using (var client = new HttpClient(wrh))
    {
        await client.GetAsync("https://api.twitter.com");

        var exc = Assert.Throws<AggregateException>(() =>
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            client.GetAsync("https://api.github.com/").Result);
        Assert.IsType<HttpRequestException>(exc.InnerExceptions[0]);
    }
}

The verisignCerts field contains the pinset as a set of certificate thumbprints contained
in the custom CertThumbprintSet class:

public class CertThumbprintSet : HashSet<string>
{
    public CertThumbprintSet(params string[] thumbs)
        :base(thumbs, StringComparer.OrdinalIgnoreCase)
    {}
}

The HttpClient used in this example is created with an explicitly instantiated WebRe
questHandler. This handler exposes the ServerCertificateValidationCallback
property, which can be assigned with a delegate that is called by the runtime after the
standard built-in certificate validation process is finished. This delegate receives this
validation result, including information on the occurrence of errors, and returns a
Boolean with the final validation result. It can be used to override the built-in validation
result or to perform additional verification steps.

In this case, we use it for this last goal. The server certificate is considered valid only if:

• The built-in validation was successful; that is, errors == SslPolicyErrors.None.
• The certificate chain contains at least one of the known CA certificates (the pinned

certificates).

Notice that the leaf certificate is skipped in this process, since we are interested only in
ensuring that the CA certificates belong to a well-known pinset. Notice also that this
pinset is applicable only to the Twitter context. As Assert.Throws illustrates, connecting
to a different server (api.github.com) using this configuration results in a certificate
authentication exception.

At the time of this writing, the use of certificate pinning is still highly context-dependent
and must typically be coordinated with the authority managing the servers. The Twitter
security best practices are an example of the pinning strategy. There are, however, some
specifications being developed that aim to make this technique more generic. One of
them, called Public Key Pinning Extension for HTTP, enables a server to instruct clients
to pin the provided certificates for a given period of time. It accomplishes this by adding
a response header with the pinned certificates and the pinning time period:

Public-Key-Pins: pin-sha1="4n972HfV354KP560yw4uqe/baXc=";
        pin-sha1="qvTGHdzF6KLavt4PO0gs2a6pQ00=";
        pin-sha256="LPJNul+wow4m6DsqxbninhsWHlwfp0JecwQzYpOLmCQ=";
        max-age=2592000
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Another aspect that you should enforce when authenticating a server is to ensure that
none of the presented certificates was revoked. However, for this to happen the Serv
icePointManager must be explicitly configured via the CheckCertificateRevocation
List static property:

ServicePointManager.CheckCertificateRevocationList = true;

The ServicePointManager is the class used by the .NET HTTP client infrastructure to
obtain connections to servers, via ServicePoint objects.

We can also use the WebRequestHandler.ServerCertificateValidationCallback to
ensure that the proper revocation verification was performed.

return errors == SslPolicyErrors.None &&
    caCerts.Any(cert => verisignCerts.Contains(cert.GetCertHashString())) &&
    chain.ChainPolicy.RevocationMode == X509RevocationMode.Online;

The last condition in the previous code excerpt uses the ChainPolicy property of the
X509Chain received by the callback delegate to ensure that the revocation verification
was performed over an online mechanism. If this condition does not hold, then the
server certificate is not accepted and an exception is thrown.

Client Authentication
The TLS transport security mechanism can also provide client authentication. However,
it requires the use of client certificates, increasing the client complexity and infrastruc‐
ture requirements: clients must store private keys and have certificates issued to them.
Because of these requirements, this client authentication option is not very common.
However, you should strongly consider its use in the following scenarios:

• The security requirements demand a higher-assurance client authentication meth‐
od.

• There is already a public key infrastructure (PKI) in place that can be used to issue
the client certificates.

For instance, several European countries are developing electronic identity initiatives,
where each citizen has a smartcard containing a personal certificate (and associated
private key). These certificates can be used to authenticate the citizen’s TLS interactions
with e-government sites. So, when developing an e-government Web API in these con‐
texts, you should consider using TLS client authentication. Currently, the major limi‐
tation is the difficulty in using these smartcards in portable devices, such as smartphones
or tablets.

As a concrete example , the Windows Azure Service Management REST API is a public
Web API using TLS-based client authentication: client requests must use a management
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certificate, previously associated with the managed service. In this API, the certificates
are self-generated by the client and no PKI is required, which simplifies its usage.

When hosting on top of IIS, you can configure TLS client authentication in the SSL
Settings of the IIS Manager Features view, as shown in Figure 15-8.

Figure 15-8. Configuring TLS client authentication

This setting is scoped to a folder and presents three options for the TLS handshake:

• Not requesting the client certificate (Ignore)
• Requesting the client certificate but allowing the client to not send one (Accept)
• Requesting the client certificate and requiring the client to send it (Require)

When self-hosting, you configure the client authentication using the netsh command-
line tool, by using the clientcertnegotiation parameter when setting the server TLS
certificate:

netsh http add sslcert (...) clientcertnegotiation=enable

The client certificate is not contained in the HTTP request sent by the client. Instead,
this certificate is a property of the transport connection on which the request was re‐
ceived. This certificate is associated with the request object via the Web API hosting
layer. If self-hosting, you must perform an additional configuration step: setting the
configuration’s ClientCredentialType property to Certificate:

var config = new HttpSelfHostConfiguration("https://www.example.net:8443");
config.ClientCredentialType = HttpClientCredentialType.Certificate;

This configuration is required only so that the certificate information is flowed up from
the self-host WCF adapter into the request object. It does not influence the way the TLS
connection is negotiated and established—namely, it does not replace the netsh-based
configuration. When you’re using web hosting, this configuration step isn’t required.
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The HttpSelfHostConfiguration also contains the X509CertificateValidator prop‐
erty, allowing the definition of an additional custom certificate validation procedure.
Note that this definition does not change the certificate validation done by the TLS
HTTP.SYS implementation; it simply adds another one. Also, it is available only when
you’re self-hosting.

When using TLS-based client-side authentication, you obtain the client’s identity at the
server side by inspecting the negotiated certificate, independently of the hosting sce‐
nario. This information is retrieved from the request message via the GetClientCerti
ficate extension method, as shown in Example 15-1.

Example 15-1. Accessing the client certificate
public class HelloController : ApiController
{
    public HttpResponseMessage Get()
    {
        var clientCert = Request.GetClientCertificate();
        var clientName = clientCert == null ? "stranger" : clientCert.Subject;
        return new HttpResponseMessage
        {
            Content = new StringContent("Hello there, " + clientName)
        };
    }
}

In ASP.NET Web API 2.0, the new HttpRequestContext class can also be used to retrieve
the client certificate:

var clientCert = Request.GetRequestContext().ClientCertificate;

However, a better approach is to create a message handler, such as the one shown in
Example 15-2, that maps the received client certificate into a claims-based identity. This
way, we obtain a homogeneous identity representation that is independent of the au‐
thentication mechanism. We can also use this message handler to perform additional
certificate validation. By default, the TLS HTTP.SYS implementation will validate cer‐
tificates using any of trusted root certification authorities present in the Windows Store.
However, we may wish to limit this validation to a more restricted certification authority
set.

Example 15-2. Message handler for certificate validation and claims mapping
public class X509CertificateMessageHandler : DelegatingHandler
{
    private readonly X509CertificateValidator _validator;
    private readonly Func<X509Certificate2, string> _issuerMapper;
    const string X509AuthnMethod =
        "http://schemas.microsoft.com/ws/2008/06/identity/authenticationmethod/x509";

    public X509CertificateMessageHandler(
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        X509CertificateValidator validator,
        Func<X509Certificate2,string> issuerMapper)
    {
        _validator = validator;
        _issuerMapper = issuerMapper;
    }

    protected override async Task<HttpResponseMessage> SendAsync(
        HttpRequestMessage request,
        CancellationToken cancellationToken)
    {
        var cert = request.GetClientCertificate();
        if (cert == null) return await base.SendAsync(request, cancellationToken);
        try
        {
            _validator.Validate(cert);
        }
        catch (SecurityTokenValidationException)
        {
            return new HttpResponseMessage(HttpStatusCode.Unauthorized);
        }
        var issuer = _issuerMapper(cert);
        if (issuer == null)
        {
            return new HttpResponseMessage(HttpStatusCode.Unauthorized);
        }

        var claims = ExtractClaims(cert, issuer);
        var identity = new ClaimsIdentity(claims, X509AuthnMethod);
        AddIdentityToCurrentPrincipal(identity, request);

        return await base.SendAsync(request, cancellationToken);
    }

    private static IEnumerable<Claim> ExtractClaims(
        X509Certificate2 cert,
        string issuer)
    {
        ...
    }

    private static void AddIdentityToCurrentPrincipal(ClaimsIdentity identity)
    {
        ...
    }
}

First, the client certificate is obtained from the request message via the GetClientCer
tificate extension method. Afterward, the validator defined in the constructor is used
to perform the additional certificate validation. The X509CertificateValidator is an
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abstract base class, belonging to the .NET Framework, that represents a certificate val‐
idation process. It contains a set of static classes with commonly used validators:

public abstract class X509CertificateValidator : ICustomIdentityConfiguration
{
        // members and implementation elided for clarity
        public static X509CertificateValidator None {get{...}}
        public static X509CertificateValidator PeerTrust {get{...}}
        public static X509CertificateValidator ChainTrust {get{...}}
        public static X509CertificateValidator PeerOrChainTrust{get{...}}
}

If the certificate passes the additional verification, then the Func<X509Certificate2,
string> is used to obtain an issuer name, which will be used when the extracted claims
are created. The two common strategies for this are:

• Use the certificate’s issuer name (e.g., CN=Demo Certification Authority, O=Web
API Book).

• Map the CA certificate that issued the client’s certificate to an issuer string, using a
previously defined registry.

The IssuerNameRegistry is a .NET Framework class providing this last behavior.

After the issuer name is obtained, the claim set representing the requester is computed
from the client certificate:

private static IEnumerable<Claim> ExtractClaims(
    X509Certificate2 cert,
    string issuer)
{
    var claims = new Collection<Claim>
        {
            new Claim(ClaimTypes.Thumbprint,
                        Convert.ToBase64String(cert.GetCertHash()),
                    ClaimValueTypes.Base64Binary, issuer),
            new Claim(ClaimTypes.X500DistinguishedName,
                cert.SubjectName.Name,
                ClaimValueTypes.String, issuer),
            new Claim(ClaimTypes.SerialNumber, cert.SerialNumber,
                ClaimValueTypes.String, issuer),
            new Claim(ClaimTypes.AuthenticationMethod, X509AuthnMethod,
                ClaimValueTypes.String, issuer)
        };
    var email = cert.GetNameInfo(X509NameType.EmailName, false);
    if (email != null)
    {
        claims.Add(new Claim(ClaimTypes.Email, email,
            ClaimValueTypes.String, issuer));
    }
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    return claims;
}

In the previous example, we mapped several certificate fields into individual claims—
namely, the certificate hash thumbprint, the subject’s name, the certificate serial number,
and the subject’s email, if present. A claim with the authentication method is also added.

Finally, a claims identity is created and added to the current claims-based principal. If
there isn’t a current principal, then a new one is created:

private static void AddIdentityToCurrentPrincipal(ClaimsIdentity identity)
{
    private void AddIdentityToCurrentPrincipal(
        ClaimsIdentity identity,
        HttpRequestMessage request)
    {
        var principal = request.GetRequestContext().Principal as ClaimsPrincipal;
        if (principal == null)
        {
            principal = new ClaimsPrincipal(identity);
            request.GetRequestContext().Principal = principal;
        }
        else
        {
            principal.AddIdentity(identity);
        }
    }
}

Using a message handler to map the client certificate into a claims-based identity allows
the downstream Web API runtime components to always consume identity information
in the same manner. For instance, the previous HelloController presented in
Example 15-1 can now be rewritten as:

public class HelloController : ApiController
{
    public HttpResponseMessage Get()
    {
        var principal = User as ClaimsPrincipal;
        var name = principal
            .Identities.SelectMany(ident => ident.Claims)
            .FirstOrDefault(c => c.Type == ClaimTypes.Email).Value ?? "stranger";
        return new HttpResponseMessage
        {
            Content = new StringContent("Hello there, " + name)
        };
    }
}

The ApiController class contains a User property with the requester’s principal, similar
to what happens in ASP.NET MVC. Note also that the consuming code deals only with
claims and does not depend on the transport-based client mechanism. As an example,
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the use of a new authentication mechanism, such as the ones we’ll address in the next
section, will not require changes on the action’s code. However, before we move on to
message-based authentication, we must see how transport-based client authentication
is used on the client side.

On the client side, the configuration of TLS-based authentication requires you to deal
directly with one of the available HttpClient handlers presented in Chapter 14:
HttpClientHandler or WebRequestHandler.

The first option is to explicitly configure the HttpClient with an HttpClientHandler
instance, containing its ClientCertificateOptions property set to Automatic:

var client = new HttpClient(
    new HttpClientHandler{
        ClientCertificateOptions = ClientCertificateOption.Automatic
    });
// ...

The resulting HttpClient can then be used normally: if during a connection handshake
the server requires the client certificate, the HttpClientHandler instance will automat‐
ically select a compatible client certificate. This option is the only one available for
Windows Store applications.

For classic scenarios (e.g., console, WinForms, or WPF applications) there is a second
option: using the WebRequestHandler:

var clientHandler = new WebRequestHandler()
clientHandler.ClientCertificates.Add(cert);
var client = new HttpClient(clientHandler)

Here, cert is a X509Certificate2 instance representing the client certificate. This in‐
stance can be constructed directly from a PFX file or obtained from a Windows certif‐
icate store:

X509Store store = null;
try
{
    store = new X509Store(StoreName.My, StoreLocation.CurrentUser);
    store.Open(OpenFlags.OpenExistingOnly | OpenFlags.ReadOnly);
    // select the certificate from store.Certificates ...
}
finally
{
    if(store != null) store.Close();
}

Having explored the use of the transport security mechanism to provide client and
server authentication, we will now see how these security requirements can also be
addressed at the HTTP message level.
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The HTTP Authentication Framework
As we saw in Chapter 1, the HTTP protocol specification includes a generic authenti‐
cation framework, upon which concrete mechanisms can be defined. The basic authen‐
tication and digest access authentication schemes are examples of such mechanisms,
both defined by RFC 2617. This authentication framework defines both response status
codes, message headers, and a challenge-response sequence that can be used by the
concrete mechanisms, as illustrated in Chapter 1 and Appendix E.

The basic authentication scheme uses a simple username and password pair to authen‐
ticate the client. These credentials are added to the request message in the following
manner:

1. The username and the password are concatenated, separated by a : (colon).
2. The concatenation result is Base64-encoded to produce a string that is placed after

the Basic scheme identifier in the Authorization header.

Example 15-3 presents a code fragment for obtaining user information from the GitHub
API, using basic authentication. Notice the addition of the Authorization header to
the request message.

Example 15-3. Obtaining user information from GitHub using basic authentication
using (var client = new HttpClient())
{
    var req = new HttpRequestMessage(
        HttpMethod.Get, "https://api.github.com/user");
    req.Headers.UserAgent.Add(new ProductInfoHeaderValue("webapibook","1.0"));
    req.Headers.Authorization = new AuthenticationHeaderValue(
        "Basic",
        Convert.ToBase64String(
            Encoding.ASCII.GetBytes(username + ':' + password))
        );
    var resp = await client.SendAsync(req);
    Console.WriteLine(resp.StatusCode);
    var cont = await resp.Content.ReadAsStringAsync();
    Console.WriteLine(cont);
}

On the server side, the use of basic authentication can be enforced by a message handler,
such as the one presented in Example 15-4. This handler checks for the presence of an
Authorization header with the Basic scheme and tries to extract the username and
password in order to validate it. If this verification succeeds, a principal describing the
requester is created and added to the request message, before the processing is delegated
to the next handler. If any of the preceding conditions fails, the handler short-circuits
the request by producing a response message with a 401 status code.
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In any of the former cases, if the response message has a 401 status code, then a WWW-
Authenticate header containing the required scheme and the realm name is added.

Example 15-4. Basic authentication message handler
public class BasicAuthenticationDelegatingHandler : DelegatingHandler
{
    private readonly Func<string, string, Task<ClaimsPrincipal>> _validator;
    private readonly string _realm;

    public BasicAuthenticationDelegatingHandler(string realm, Func<string, string,
        Task<ClaimsPrincipal>> validator)
    {
        _validator = validator;
        _realm = "realm=" + realm;
    }

    protected async override Task<HttpResponseMessage> SendAsync(
        HttpRequestMessage request,
        CancellationToken cancellationToken)
    {
        HttpResponseMessage res;
        if (!request.HasAuthorizationHeaderWithBasicScheme())
        {
            res = await base.SendAsync(request, cancellationToken);
        }
        else
        {
            var principal = await
                request.TryGetPrincipalFromBasicCredentialsUsing(_validator);
            if (principal != null)
            {
                request.GetRequestContext().Principal = principal;
                res = await base.SendAsync(request, cancellationToken);
            }
            else
            {
                res = request.CreateResponse(HttpStatusCode.Unauthorized);
            }
        }

        if (res.StatusCode == HttpStatusCode.Unauthorized)
        {
            res.Headers.WwwAuthenticate.Add(
                new AuthenticationHeaderValue("Basic", _realm));
        }
        return res;
    }
}
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If the authentication is successful, the resulting principal is added to the request via the
HttpRequestContext.Principal. The extraction and validation is performed by an
extension method:

 public static async Task<ClaimsPrincipal>
    TryGetPrincipalFromBasicCredentialsUsing(
        this HttpRequestMessage req,
        Func<string,string,Task<ClaimsPrincipal>> validate)
{
    string pair;
    try
    {
        pair = Encoding.UTF8.GetString(
            Convert.FromBase64String(req.Headers.Authorization.Parameter));
    }
    catch (FormatException)
    {
        return null;
    }
    catch (ArgumentException)
    {
        return null;
    }
    var ix = pair.IndexOf(':');
    if (ix == -1) return null;
    var username = pair.Substring(0, ix);
    var pw = pair.Substring(ix + 1);
    return await validate(username, pw);
}

This function is decoupled from the username and password validation login, which is
passed in as a delegate in the handler constructor.

Implementing HTTP-Based Authentication
In the previous example, we implemented server-side HTTP authentication as a Web
API message handler. However, there are other architectural options: authentication
can be implemented up in the pipeline as a Web API filter, or down in the hosting layer.
Next we’ll discuss the advantages and disadvantages of each option.

Implementing authentication on a Web API filter has the advantage of giving you access
to a richer set of request information, namely:

• The selected controller and routes
• The routing parameters
• The action’s parameters (if implemented as a action filter)

This option is relevant when the authentication depends on this information. In addi‐
tion, Web API filters may be selectively applied to only a subset of controllers or actions.
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However, implementing authentication at the filter level also has some important
disadvantages:

• Improperly authenticated requests are detected later in the pipeline, increasing the
computational cost of rejected requests.

• The requester’s identity is available only later in the pipeline. This means that other
middleware components, such as caching middleware, may not have access to the
identity information. If the caching should be private (i.e., segregated by user), then
this is a severe limitation.

An alternative option is to implement authentication on a message handler, as shown
previously. Since a message handler runs immediately after the hosting adaptation layer,
the cost of rejected requests is smaller. Also, the identity information is immediately
available to all the following handlers. Since message handlers are also available on the
client side, when you use HttpClient, this approach exhibits an interesting symmetry.

However, the use of the OWIN specification, described in Chapter 11, introduces an‐
other option for implementing authentication: OWIN middleware. This option
presents important advantages:

• It broadens the usage scope, since the same authentication middleware can now be
used by multiple frameworks, not only ASP.NET Web API.

• The identity information is immediately available to other downstream OWIN
middleware, such as caching or logging.

In fact, the introduction of the OWIN specification means that all intermediary layers
that are not specific to a framework should probably be best implemented as OWIN
middleware. This is the approach being followed by the Katana project, which includes
a set of authentication middleware implementations.

Obviously, this approach is applicable only when you’re hosting Web API on top of an
OWIN server. However, the increasing OWIN adoption makes this scenario much more
plausible.

Katana Authentication Middleware
Version 2.0 of the Katana project includes a set of middleware implementations, pro‐
viding multiple authentication mechanisms with different usage scopes, ranging from
classical cookie-based authentication to OAuth 2.0–based authorization. These mid‐
dleware implementations are based on an extensible class infrastructure, which we’ll
describe in the following paragraphs.
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At the root of this infrastructure it is the base abstract AuthenticationMiddleware<TOp
tion> class, shown in Example 15-5, from which concrete authentication middleware
can derive.

Example 15-5. The authentication middleware base class
public abstract class AuthenticationMiddleware<TOptions> : OwinMiddleware
        where TOptions : AuthenticationOptions
{
    protected AuthenticationMiddleware(OwinMiddleware next, TOptions options)
        : base(next)
    { ... }

    public TOptions Options { get; set; }

    public override async Task Invoke(IOwinContext context)
    {
        AuthenticationHandler<TOptions> handler = CreateHandler();
        await handler.Initialize(Options, context);
        if (!await handler.InvokeAsync())
        {
            await Next.Invoke(context);
        }
        await handler.TeardownAsync();
    }

    protected abstract AuthenticationHandler<TOptions> CreateHandler();
}

This class is parameterized by a TOption type that defines the authentication middleware
configuration options, such as credential validation. Typically, the development of cus‐
tom authentication middleware includes the definition of a specific options class, such
as the one presented in Example 15-6.

Example 15-6. Basic authentication options
public class BasicAuthenticationOptions : AuthenticationOptions
{
    public Func<string, string, Task<AuthenticationTicket>>
        ValidateCredentials { get; private set; }
    public string Realm { get; private set; }

    public BasicAuthenticationOptions(
        string realm,
        Func<string, string, Task<AuthenticationTicket>> validateCredentials)
        : base("Basic")
    {
        Realm = realm;
        ValidateCredentials = validateCredentials;
    }
}
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The OwinMiddleware.Invoke method, called when the request is being passed through
the middleware pipeline, delegates the authentication behavior into an authentication
handler instance, provided by the CreateHandler method. So, the main task of a custom
authentication middleware is typically just the definition of this method, as illustrated
by Example 15-7.

Example 15-7. Basic authentication middleware
class BasicAuthnMiddleware : AuthenticationMiddleware<BasicAuthenticationOptions>
{
    public BasicAuthnMiddleware(
        OwinMiddleware next,
        BasicAuthenticationOptions options)
        : base(next, options)
    {}

    protected override AuthenticationHandler<BasicAuthenticationOptions>
        CreateHandler()
    {
        return new BasicAuthenticationHandler(Options);
    }
}

To better understand the handler’s responsibilities, you’ll find it useful to see how it is
used by the base middleware. As shown in Example 15-5, after creating the handler, the
base middleware’s Invoke method performs three steps. First, it calls the handler’s
Initialize method. As we will see briefly, it is this method that triggers most of the
authentication behavior. Afterward, it calls the handler’s InvokeAsync method. If the
return value is false, then the next middleware in the chain is called. Otherwise, the
request processing is short-circuited, meaning that no more downstream middleware
is called. Finally, at the end, the TeardownAsync method is called to finalize the handler’s
instance. Notice that the middleware and the handler objects have different lifetimes:
the middleware lasts for the duration of the application, while the handler instance is
specific to single-request processing. This is one of the reasons that justifies the existence
of these two separate concepts.

The AuthenticationHandler abstract class, shown in Figure 15-9, is where most of the
common authentication coordination resides. The specific authentication logic is dele‐
gated to hook methods implemented by concrete derived classes. In the context of the
HTTP framework-based authentication, two of these hook methods are particularly
relevant: AuthenticateCoreAsync and ApplyResponseChallengeAsync.
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Figure 15-9. Katana authentication middleware

The AuthenticateCoreAsync method is called by the handler’s Initialize method to
try to authenticate the current request. Example 15-8 shows an Authentication
CoreAsync implementation that tries to get and validate the Basic credentials from the
request’s Authorization header. If it’s sucessful, an identity is returned, which will be
added by the base Initialize method to the request—more specifically, to the serv
er.User context entry. If not, null is returned to signal that no sucessful authentication
was achieved.

ApplyResponseChallengeAsync is registered by the handler’s Initialize method to
be called on the response’s OnSendingHeaders event, which is triggered just before the
response’s headers start to be sent to the connection. Example 15-8 also shows a Ap
plyResponseChallengeAsync implementation that adds a WWW-Authenticate chal‐
lenge header, with the Basic scheme, if the response is a 401.

Example 15-8. Basic authentication handler
class BasicAuthenticationHandler : AuthenticationHandler<BasicAuthenticationOptions>
{
    private readonly string _challenge;

    public BasicAuthenticationHandler(BasicAuthenticationOptions options)
    {

Authentication | 381



        _challenge = "Basic realm=" + options.Realm;
    }

    protected override async Task<AuthenticationTicket> AuthenticateCoreAsync()
    {
        var authzValue = Request.Headers.Get("Authorization");
        if (string.IsNullOrEmpty(authzValue) || !authzValue.StartsWith("Basic ",
            StringComparison.OrdinalIgnoreCase))
        {
            return null;
        }
        var token = authzValue.Substring("Basic ".Length).Trim();
        return await
            token.TryGetPrincipalFromBasicCredentialsUsing(
                Options.ValidateCredentials);
    }

    protected override Task ApplyResponseChallengeAsync()
    {
        if (Response.StatusCode == 401)
        {
            var challenge = Helper.LookupChallenge(
                Options.AuthenticationType, Options.AuthenticationMode);
            if (challenge != null)
            {
                Response.Headers.AppendValues("WWW-Authenticate", _challenge);
            }
        }
        return Task.FromResult<object>(null);
    }
}

The AuthenticationTicket type, asynchronously returned by the Authentication
Ticket hook method, is a new type introduced by the Katana project to represent an
identity. It is composed of a claims identity and a set of additional authentication prop‐
erties:

public class AuthenticationTicket
{
    public AuthenticationTicket(
        ClaimsIdentity identity, AuthenticationProperties properties)
    {
        Identity = identity;
        Properties = properties;
    }

    public ClaimsIdentity Identity { get; private set; }
    public AuthenticationProperties Properties { get; private set; }
}
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To facilitate the middleware registration, it is typical for custom authentication imple‐
mentations to also provide an extension method such as the one shown in
Example 15-9. This enables usages such as this one:

app.UseBasicAuthentication(
    new BasicAuthenticationOptions("webapibook", (un, pw) => {
    /* some credential validation logic */
}));

Example 15-9. Extension method used to register the basic authentication middleware
public static class BasicAuthnMiddlewareExtensions
{
    public static IAppBuilder UseBasicAuthentication(
        this IAppBuilder app, BasicAuthenticationOptions options)
    {
        return app.Use(typeof(BasicAuthnMiddleware), options);
    }
}

Active and Passive Authentication Middleware
In the OWIN specification, middleware accesses the request before it reaches the web
framework. This means that the authentication requirements may not be known at the
time the middleware is run. As an example, consider a classical web application and a
Web API hosted on the same OWIN host. The former may use cookies and forms-based
authentication, while the latter may use basic authentication. Using cookies to inadver‐
tently authenticate a Web API request may result in security problems such as CSRF
(cross-site request forgery) attacks, since cookies are automatically sent by browser-
based user agents.

For this reason, Katana introduced the concept of active and passive authentication
modes. When in active mode, an authentication middleware will actively try to authen‐
ticate the request, adding an identity to the request context if successful. It also will add
a challenge to the responses if they have 401 status codes. On the other hand, a mid‐
dleware in passive mode registers itself only on a authentication manager. Only if ex‐
plicitly asked does the handler try to authenticate the request and produce an identity.
Authentication middleware operating in passive mode will also add challenges only if
explicitly instructed by the authentication manager.

The authentication manager is yet another concept introduced by Katana and defines
an interface through which other components, such as web applications, can interact
with authentication middleware. In the next section, when describing Web API’s au‐
thentication filters, we will present a concrete example of such usage.

The operation mode of an authentication middleware is defined by the
AuthenticationOptions.AuthenticationMode property. For the most part, concrete
authentication implementations don’t have to be aware of the configured authentication
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mode. Instead, the behavioral differences are located in the common code located in
the base AuthenticationHandler class. For instance, AuthenticateCoreAsync will be
called only if the authentication mode is active.

One notable exception to this rule is the addition of challenges to the response. ApplyR
esponseChallengeAsync is always called by the infrastructure, independently of the
configured mode. However, the challenge should be added only if the mode is active or
if the authentication scheme was added to the authentication manager.

The ApplyResponseChallengeAsync implementation in Example 15-8 uses the Help
er.LookupChallenge utility method to decide if the challenge should be added.

Web API Authentication Filters
As stated before, an alternative architectural decision is to place authentication behavior
on Web API filters. Version 2.0 of Web API introduces a new action pipeline stage,
specifically designed to handle authentication. This stage is composed of authentication
filters and precedes the authorization filters stage, meaning that it is the first one in the
action pipeline.

An authentication filter is defined by the following interface, which contains two asyn‐
chronous methods:

public interface IAuthenticationFilter : IFilter
{
    Task AuthenticateAsync(
        HttpAuthenticationContext context,
        CancellationToken cancellationToken);

    Task ChallengeAsync(
        HttpAuthenticationChallengeContext context,
        CancellationToken cancellationToken);
}

This authentication pipeline stage is divided into two phases: request processing and
response processing. In the first one, the Web API runtime calls the AuthenticateAsync
method for each one of the registered filters, passing an authentication context con‐
taining both the action context and the request:

public class HttpAuthenticationContext
{
    public HttpActionContext ActionContext { get; private set; }
    public IPrincipal Principal { get; set; }
    public IHttpActionResult ErrorResult { get; set; }
    public HttpRequestMessage Request { get { ... }}
    ...
}
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Each filter’s AuthenticateAsync method is responsible for authenticating the context’s
request. If no credentials of the appropriate scheme are present in the message, then the
context should be left unchanged. If credentials are present and valid, then the context’s
Principal property is assigned with the authenticated principal. Otherwise, if the cre‐
dentials are invalid, a 401 status response message should be assigned to the context’s
ErrorResult, signaling to the runtime that there was an authentication error. As a con‐
sequence, the request processing phase is immediately stopped, without calling any
further AuthenticateAsync method, and the response phase is started.

If no filter assigned the context’s ErrorResult, then the runtime continues to the next
action pipeline phase. This happens independently of the context’s principal being as‐
signed or not, delegating to upper layers the decision of whether or not to authorize the
anonymous request.

The response processing phase of the authentication stage starts when a response is
returned from the upper layer or if an error response was produced by an authentication
filter. In this response phase, the ChallengeAsync method is called for each one of the
registered filters, passing a challenge context:

public class HttpAuthenticationContext
{
    public HttpActionContext ActionContext { get; private set; }
    public IPrincipal Principal { get; set; }
    public IHttpActionResult ErrorResult { get; set; }
    public HttpRequestMessage Request { get { ... }}
    // members and definitions elided for clarity
}

This gives the authentication filters the opportunity to inspect the result message and
add an authentication challenge if appropriate. Note that this method is always called
for all authentication filters, independently of what happened in the request processing
phase.

Example 15-10 shows a concrete authentication filter for the basic authentication
scheme. Since the credential validation process may involve communication with ex‐
ternal systems (e.g., a credential database), we use a function returning a Task<Claim
sPrincipal>. If no Authorization header is present or if the scheme is not Basic, then
AuthenticateAsync leaves the context unchanged. If credentials are present but are
invalid, then an UnauthorizedResult representing a 401 status response is assigned to
the ErrorResult. This UnauthorizedResult has an empty challenge list, since this
challenge information is added to the response processing phase by the ChallengeAsync
method.

ChallengeAsync simply checks if the response has a 401 status, and if so adds the ap‐
propriate challenge. The use of the ActionResultDelegate helper is required because
the context’s Response property is an IHttpActionResult, not directly an HttpRespon
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seMessage. This helper combines a sequence of IHttpActionResult instances into a
single one.

Example 15-10. Basic authentication message handler
public class BasicAuthenticationFilter : IAuthenticationFilter
{
    private readonly Func<string, string, Task<ClaimsPrincipal>> _validator;
    private readonly string _realm;
    public bool AllowMultiple { get { return false; } }

    public BasicAuthenticationFilter(
        string realm, Func<string, string, Task<ClaimsPrincipal>> validator)
    {
        _validator = validator;
        _realm = "realm=" + realm;
    }

    public async Task AuthenticateAsync(
        HttpAuthenticationContext context,
        CancellationToken cancellationToken)
    {
        var req = context.Request;
        if (req.HasAuthorizationHeaderWithBasicScheme())
        {
            var principal = await
                req.TryGetPrincipalFromBasicCredentialsUsing(_validator);
            if (principal != null)
            {
                context.Principal = principal;
            }
            else
            {
                // challenges will be added by the ChallengeAsync
                context.ErrorResult = new UnauthorizedResult(
                    new AuthenticationHeaderValue[0], context.Request);
            }
        }
    }

    public Task ChallengeAsync(
        HttpAuthenticationChallengeContext context,
        CancellationToken cancellationToken)
    {
        context.Result = new ActionResultDelegate(context.Result, async (ct, next) =>
        {
            var res = await next.ExecuteAsync(ct);
            if (res.StatusCode == HttpStatusCode.Unauthorized)
            {
                res.Headers.WwwAuthenticate.Add(
                new AuthenticationHeaderValue("Basic", _realm));
            }
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            return res;
        });
        return Task.FromResult<object>(null);
    }
}

ASP.NET Web API 2.0 also includes a concrete IAuthenticationFilter implementa‐
tion, named HostAuthenticationFilter, that uses Katana’s authentication middle‐
ware, via the Katana authentication manager.

On the AuthenticateAsync method, this filter starts by trying to obtain the Katana
authentication manager from the request context. If the authentication manager is
present, the filter then uses it to authenticate the request, passing the configured au‐
thentication type. Internally, the authentication manager checks if a compatible mid‐
dleware was registered and, if so, invokes it to authenticate the request (passive mode)
or returns the result of the previous authentication already done on the middleware
pipeline (active mode).

Similarly, the HostAuthenticationFilter.ChallengeAsync method also tries to ob‐
tain the Katana authentication manager and uses it to add the challenge information,
which will then be used by Katana’s authentication middleware to add the challenge
WWW-Authenticate header.

Token-Based Authentication
Unfortunately, the password-based HTTP basic authentication method described and
used in the previous sections has several problems. The first set results from the pass‐
word having to be sent on every request:

• The client must store the password or obtain it from the user on every request,
which is rather impractical. Notice also that this storage must be done in clear text
or through a reversible protection method, which increases the risk of password
exposure.

• Similarly, the server has to validate the password on every request, which can have
a significant cost.

• The validation information is typically stored on external systems.
• The validation process has a high computational cost due to the techniques used

to protect against dictionary attacks.
• The probability of accidental exposure to an unauthorized party is increased.

Passwords also typically have low uncertainty and are subject to dictionary attacks. This
means that any publicly available system that validates passwords must have protections
against this type of attack, for instance by limiting the number of incorrect validations
that are performed in a given time period.
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Passwords also typically have broad scopes, meaning that the same password is used to
authenticate a client when accessing any resource on a given system. Most of the time,
it would be useful to have a credential that’s usable only on a resource or HTTP method
subset.

Password-based mechanisms are also not compatible with distributed scenarios, where
the authentication process is delegated to external systems, such as organizational or
social identity providers. Finally, they are not adequate for delegation scenarios, which
we will see in Chapter 16.

A better approach to Web API authentication is to use security tokens, which are defined
by RFC 4949 as “a data object (…) used to verify an identity in an authentication pro‐
cess.” A concrete token example is the use of authentication cookies on a typical web
application:

1. An initial bootstrap authentication is performed, eventually using a password-
based mechanism, which results in the creation of a cookie that is returned to the
client.

2. Every subsequent request made by the client is authenticated via this cookie and
does not require the bootstrapping credentials.

Security tokens are a rather general and abstract concept; they may be instantiated in
different ways and possess different characteristics. Next we present some of the most
relevant design alternatives.

First, security tokens can contain the represented security information or just be a
reference to that information. In the latter case, a token simply contains a nonforgeable
reference to a security store entry, typically managed by the token issuer. These
reference-based tokens are also called artifacts and have two main benefits:

• They have shorter dimensions, which is important when they have to be embedded
in URIs.

• They are easier to revoke or cancel; the issuer just has to delete the referenced store
entry.

However, they are not self-contained: obtaining the represented security information
typically requires an query to the token issuer or external store. Thus, they are more
commonly used when the issuing and consuming entities are the same or when there
are length restrictions.

A nonforgeable reference token can be made of a random bit string with sufficient length
(e.g., 256 bits), created by the token issuer. The associated token security information
is then stored, keyed by the hash value of this reference. The use of a cryptographic hash
function means that:
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• It is easy to compute the store key and access the security information, given the
token contents.

• It is hard to compute a valid token given the store key, which is an extra layer of
defense in case an attacker can read the store contents.

The alternative option to references is for tokens to contain the security information,
securely packaged for communication between two or more parties. This packaging
requires the use of cryptographic mechanisms and ensures properties such as:
Confidentiality

Only the authorized receiver should be able to access the contained information.

Integrity
The consuming party should be able to detect any modifications to the token while
in transit between the two parties.

These tokens are commonly called assertions and have the advantage of being self-
contained: the token consumer can obtain the security information without having to
access an external system or store. The downside is that they have higher dimensions,
which can exceed the practical URI limits. They also require the use of cryptographic
mechanisms for their production and consumption. The SAML (Security Assertion
Markup Language) assertions are a broadly used example of self-contained tokens,
where the security information is represented in a XML idiom and protected via XML-
Signature and XML-Encryption. This type of security token is commonly used by clas‐
sical federation protocols such as the SAML protocols, WS-Federation, or WS-Trust.

The JSON Web Token (JWT) is a more recent format for self-contained tokens, based
on the JSON syntax. This token type aims to be usable in “space constrained environ‐
ments such as HTTP Authorization headers and URI query parameters.”

The following example represents a signed JWT token:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJodHRwOi8vaXNzdWVyLndlYmFwaWJvb
2submV0IiwiYXVkIjoiaHR0cDovL2V4YW1wbGUubmV0IiwibmJmIjoxMzc2NTcxNzAxLCJleHAiOjE
zNzY1NzIwMDEsInN1YiI6ImFsaWNlQHdlYmFwaWJvb2submV0IiwiZW1haWwiOiJhbGljZUB3ZWJhc
Glib29rLm5ldCIsIm5hbWUiOiJBbGljZSJ9.fCO6l0k_hey40kqEVuvMfiM8LeXJtsYLfNWBOvwbU-I

The JWT token is composed of a sequence of parts, separated by the . character. Each
part is the base64url encoding of an octet stream: the first two octet streams result from
the UTF-8 encoding of two JSON objects and the last one is the output of a signature
scheme. The first object (encoded in the first part) is the JWT header:

{"typ":"JWT","alg":"HS256"}

It defines the token type and applied cryptographic protection. In this case, only integrity
protection was added via a MAC scheme (HS256 stands for HMAC-SHA256). However,
the JWT header also supports the encryption of its contents.
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The second object is the JWT claims set (line breaks added for clarity):

{
  "iss":"http://issuer.webapibook.net",
  "aud":"http://example.net",
  "nbf":1376571701,
  "exp":1376572001,
  "sub":"alice@webapibook.net",
  "email":"alice@webapibook.net",
  "name":"Alice"
}

The JWT claims set object contains claims for a subject asserted by an issuer and intended
to be used by an audience. Each property corresponds to the claim type and the prop‐
erty’s value contains the claim value, which can be any JSON value (e.g., a string or an
array). Some claim types are defined by the JWT specification, namely:

• iss (issuer) identifies the token issuer.
• sub (subject) is an unique identifier for the token subject—that is, the entity to

which the token claim applies.
• aud (audience) identifies the allowed claim consumers.
• exp (expiration) and nbf (not before) define a valid time period.

Example 15-11 shows how a JWT token can be created and consumed, using the JwtSe
curityTokenHandler class available in the System.IdentityModel.Tokens.Jwt NuGet
package.

Example 15-11. Creating and consuming a JWT token
[Fact]
public void Can_create_and_consume_jwt_tokens()
{
    const string issuer = "http://issuer.webapibook.net";
    const string audience = "the.client@apps.example.net";
    const int lifetimeInMinutes = 5;

    var tokenHandler = new JwtSecurityTokenHandler();

    var symmetricKey = GetRandomBytes(256 / 8);
    var signingCredentials = new SigningCredentials(
        new InMemorySymmetricSecurityKey(symmetricKey),
        "http://www.w3.org/2001/04/xmldsig-more#hmac-sha256",
        "http://www.w3.org/2001/04/xmlenc#sha256");

    var now = DateTime.UtcNow;

    var claims = new[]
    {
        new Claim("sub", "alice@webapibook.net"),
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        new Claim("email", "alice@webapibook.net"),
        new Claim("name", "Alice"),
    };

    var token = new JwtSecurityToken(issuer, audience, claims,
        new Lifetime(now, now.AddMinutes(lifetimeInMinutes)), signingCredentials);

    var tokenString = tokenHandler.WriteToken(token);

    var parts = tokenString.Split('.');
    Assert.Equal(3, parts.Length);

    var validationParameters = new TokenValidationParameters()
    {
        AllowedAudience = audience,
        SigningToken = new BinarySecretSecurityToken(symmetricKey),
        ValidIssuer = issuer,
    };

    tokenHandler.NameClaimType = ClaimTypes.NameIdentifier;
    var principal = tokenHandler.ValidateToken(tokenString, validationParameters);

    var identity = principal.Identities.First();

    Assert.Equal("alice@webapibook.net", identity.Name);
    Assert.Equal("alice@webapibook.net",
        identity.Claims.First(c => c.Type == ClaimTypes.NameIdentifier).Value);
    Assert.Equal("alice@webapibook.net",
        identity.Claims.First(c => c.Type == ClaimTypes.Email).Value);
    Assert.Equal("Alice", identity.Claims.First(c => c.Type == "name").Value);
    Assert.Equal(issuer, identity.Claims.First().Issuer);
}

On the validation side, TokenValidationParameters defines the token consumption
parameters, such as the allowed destinations (audiences) and issuers. These parameters
also define the signature validation key. Since the example uses a symmetrical signature
scheme, the same key must be used both on the production and consumption sides. If
the validation is successful, a claims principal with the token’s claims is also produced.

Another token classification characteristic is the way they are bound to a message. The
two most common alternatives are bearer and holder-of-key.

Bearer tokens are defined by RFC 6750 as:
A security token with the property that any party in possession of the token (a “bearer”)
can use the token in any way that any other party in possession of it can. Using a bearer

token does not require a bearer to prove possession of cryptographic key
material (proof-of-possession).

A bearer token is simply added to a message without any additional binding between
the two. This means that any party that has access to the plain-text message can get the
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contained token and use it on another message without any additional knowledge. In
this regard, bearer tokens are similar to bearer checks: they can be used by a subject
without any additional identity proof.

Bearer tokens are easy to use; however, their security fully depends on:

• The confidentiality of the message where they are contained
• The guarantee that they are never sent to the wrong parties

An alternative approach is the holder-of-key method, where, for each authenticated
message, the client must prove the knowledge of a cryptographic key bound to the token.
The client typically does this by adding a symmetric signature (a message authentication
code) of selected parts of the message, computed with the cryptographic key.

As in the basic authentication scheme, a secret is also shared between the client and the
server. However, this secret is really a key that is used to sign and validate messages and
is never transmitted:

• The client uses the shared key to sign some carefully chosen parts of the request
message and then attaches this signature to the message before sending it to the
server, alongside the token (similar to a username).

• The server uses the token to retrieve the client’s shared secret and then uses it to
validate the signature.

This scheme is based on the assumption that, for a cryptographic signature mechanism,
only a party that knows the shared key can produce valid signatures. This way, the client
proves the knowledge of a shared secret, without having to reveal it.

A malicious third party that manages to observe the request message has access only to
the signature value, not to the shared secret, so it cannot authenticate new messages. It
can, however, replay the observed message since the same signature will be valid. To
protect against this, you use a combination of timestamps and nonces.

A timestamp is a temporal value indicating the moment when the original message was
produced. The timestamp is added to the sent message and is also protected by the
signature. On the server side, messages are accepted only if the timestamp is in an
acceptance window (e.g., current time plus or minus five minutes). This window exists
to tolerate message transmission delays and clock deviations.

A nonce (contraction of the sentence “number used only once”) is typically a random
number that is used only one time. Nonces are used in conjunction with timestamps to
avoid replays inside the server acceptance window: the nonces of all received messages
are stored and a message is refused if its nonce already exists in the store. When used
with timestamps, nonces only have to be stored for the duration of the acceptance win‐
dow.
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Signature mechanisms can be divided into two types. Asymmetric mechanisms use dif‐
ferent keys for the signature production and the signature validation algorithms—the
signature production uses a private key and the signature verification uses a public key.
Symmetric mechanisms, usually designated by message authentication codes, use the
same key for both the signature production and the signature validation. This symmetry
means that any party able to verify the signatures can also produce them, which is
different from what happens with conventional signatures. As a consequence of this
symmetry, nonrepudiation isn’t provided. However, symmetric mechanisms exhibit
much better performance characteristics and so are typically used when the extra prop‐
erties provided by asymmetrical mechanisms are not needed. When the key holding
proof is based on message authentication codes, these tokens are designated as MAC
tokens. Symmetric mechanisms are also typically deterministic: the signature of the
same message with the same key always produces the same value. This means that we
can verify the signature by computing the signature value and comparing it with the
value in the received message.

A popular method of building MAC algorithms is HMAC (hash-based message au‐
thentication code), defined by RFC 2104, which internally uses a cryptographic hash
function. For instance, Amazon S3 uses a combination of HMAC with the SHA-1 func‐
tion, designated by HMAC-SHA1. Windows Azure Blob Service also uses the HMAC
algorithm, but with the more recent SHA-256 hash function (HMAC-SHA256).

The MAC token technique is used by several authentication schemes, namely:

• The Amazon Simple Storage Service (S3)
• The Windows Azure Storage Services
• The OAuth 1.0 protocol
• The Hawk HTTP authentication scheme, proposed by Eran Hammer

All four schemes use artifact tokens, meaning that the token is just an unique identifier
used by the server to retrieve the client’s identity claims as well as the token key.

Figure 15-10 illustrates the signature-based authentication process. The sending side
extracts a message representative (defined shortly) from the message and signs it using
the shared key. The resulting signature value is inserted in the sent request message.
The receiving side validates this signature by extracting the message representative,
signing it, and comparing the signature values.
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Figure 15-10. Message signature computation

Due to the presence of HTTP intermediaries that can change parts of the request mes‐
sage (e.g., remove proxy headers), the signature cannot be performed over the complete
message. Instead, it is performed over the message representative, which is a string built
from the message such that:

• It is not affected by the message changes typically performed by HTTP interme‐
diaries.

• It captures all the important parts of the message; it should not be possible to have
two semantically different messages with the same representative.

The Hawk Authentication Scheme
To make things more concrete, in this section we provide a brief description of the Hawk
authentication scheme. In this scheme, the message representative is composed on the
client side of the concatenations of the following elements, separated by a newline char‐
acter:

• The constant string "hawk.1.header"
• A timestamp string representing the number of seconds since January 1, 1970,

00:00:00 GMT
• A nonce
• The request HTTP method
• The request URI path and query
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• The request URI host name (excluding the port)
• The request URI port
• The optional payload hash or the empty string
• The optional application-specific extension data or the empty string

After being constructed, this message representative is converted into a byte sequence
through UTF8 encoding and then supplied to the MAC scheme, configured with the
token’s key. In contrast with the Amazon and Azure schemes, the Hawk authentication
scheme supports multiple MAC algorithms (currently HMAC-SHA1 and HMAC-
SHA256). The output of the MAC scheme (a byte sequence) is then converted back into
a string through the Base64-encoding algorithm.

The Authorization header uses the Hawk scheme string, followed by this set of key/
value pairs:
id

The token ID

ts

The used timestamp

nonce

The used nonce

mac

The Base64 encoding of the MAC output

hash

(Optional) The hash of the payload representative

ext

(Optional) The optional extension data

The timestamp, nonce, and extension data must be explicitly added to the message
Authorization header in order to allow the server to re-create the message represen‐
tative. Using this message representative, the server recomputes the MAC output, using
the key identified by the id field, and compares it with the received mac field. If the MAC
values are diferent, that means that the message was tampered with and should be re‐
jected. However, comparing the MAC values is not sufficient, because the attacker may
be replying to past valid messsages. To protect against this, the server should:

• Check that the received nonce wasn’t used on a previous message.
• Check that the received timestamp is inside an acceptance time window, which by

default is more or less one minute.
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The server should also store the received nonce, at least for the length of the acceptance
time window.

The Hawk scheme allows for optional protection of the request message payload by
allowing the message representative to include a hash of the payload representative,
computed as the newline separated concatenation of:

• The constant string "hawk.1.payload"
• The request content type (e.g., application/xml), with the parameters removed
• The request payload, prior to any content or transfer encoding

When using payload protection, the hash of the payload representative string is also
included in the Authorization header (hash field). This allows the server to verify the
message representative before computing the payload hash.

For more detailed information about the Hawk scheme, refer to the https://github.com/
hueniverse/hawk repository, which contains both the Hawk informal description and a
Node.JS-based implementation. This book’s GitHub repository also includes a C# im‐
plementation called HawkNet.

The following chapter, focusing on the OAuth 2.0 Framework, provides more concrete
examples of token-based authentication, namely protocols for obtaining and using these
tokens.

Authorization
As we’ve seen, authentication deals with the problem of collecting and validating in‐
formation about a subject, namely its identity claims. Authorization, on the other hand,
deals with the complementary problem of controlling the actions that these subjects may
perform over protected resources. Figure 15-11 illustrates this problem, identifying the
core concepts of subject, action, and resource.

Figure 15-11. The basic authorization model: subjects, actions, and resources

What constitutes a subject, action, and resource depends largely on the context. For
instance, the .NET Framework includes a code access authorization model where the
resources are class methods, actions correspond to method invocations, and the subjects
are the identities associated with the running thread. On the other hand, in the context
of Web APIs the mapping of this concept is rather straightforward:
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• Protected resources correspond to the HTTP resources targeted by request mes‐
sages.

• The actions are the HTTP methods (e.g., GET or DELETE).
• Finally, subjects correspond to the HTTP clients performing the HTTP requests.

It is often useful to divide authorization into the following parts: policy, decision, and
enforcement. Authorization policy is the specification of what is allowed. For instance,
the following statements are examples of an authorization policy expressed in natural
language:

• “Nonsafe HTTP methods cannot be performed by anonymous subjects.”
• “Issues can only be closed by their creators or by project managers.”
• “The ticket title can only be changed by its creator.”

Authorization decision is the process of evaluating whether an access, characterized by
a (subject, action, resource) triple, is allowed by the defined policy. Finally, authorization
enforcement is the mechanism used to ensure that only allowed accesses are performed.
Authorization enforcement is typically coupled with the runtime mechanisms available
to intercept accesses (e.g., Web API filters), whereas authorization decision is dependent
on the policy. Figure 15-12 illustrates these concepts and their relationships.

Figure 15-12. Authorization enforcement, decision, and policy

In a distributed system, the decision and enforcement components may be performed
by different nodes or at multiple levels. For instance, when using the OAuth 2.0 Frame‐
work (presented in the following chapter), you can make the authorization decisions
on an external authorization server, leaving to the resource server the task of ensuring
that only allowed accesses are performed.
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Authorization can also be performed at multiple levels, namely near the connector to
the external world (the Web API) or near the domain objects and methods. These mul‐
tiple levels are often complementary. Authorization performed at the Web API level
allows unauthorized requests to be terminated as early as possible, but the policy deci‐
sion point may not have access to all the domain information required to make a final
decision. On the other hand, authorization performed at the domain level has access to
a richer set of information. However, this also means that unauthorized requests use
more computational resources. In this chapter, the focus is given to authorization at the
Web API level.

Authorization Enforcement
ASP.NET Web API provides multiple ways of intercepting HTTP requests. One of these
ways is authorization filters, which are located in the controller layer, after authentica‐
tion filters but before model binding and action filters. As the name suggests, authori‐
zation filters can be used to perform authorization enforcement. ASP.NET Web API
includes a concrete authorization filter, named AuthorizeAttribute, which can be used
to annotate controller classes or actions. This AuthorizeAttribute class has two prop‐
erties for defining the authorization policy:

• Users is a comma-separated list of usernames; when not empty, the access is allowed
only if the user’s name belongs to that list.

• Roles is a comma-separated list of roles; when not empty, the access is allowed only
if the user has a role in that list.

Example 15-12 shows this attribute in use:

• The AuthorizeAttribute, targeting the ResourceController class, requires all
requests to be authenticated. The only exception is GET requests, since the Get action
is annotated with AllowsAnonymous.

• Authorize(Roles = "ProjectManager"), targeting Delete actions, requires all
DELETE requests to be performed by subjects in the ProjectManager role.

Example 15-12. Using the AuthorizeAttribute
[Authorize]
public class ResourceController : ApiController
{
    [AllowAnonymous]
    public HttpResponseMessage Get()
    {
        return new HttpResponseMessage
        {
            Content = new StringContent("resource representation")
        };
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    }
    public HttpResponseMessage Post()
    {
        return new HttpResponseMessage()
        {
            Content = new StringContent("result representation")
        };
    }
    [Authorize(Roles = "ProjectManager")]
    public HttpResponseMessage Delete(string id)
    {
        return new HttpResponseMessage(HttpStatusCode.NoContent);
    }
}

Unfortunately, having the authorization policy directly defined in the AuthorizeAttri
bute ties the authorization policy to the resource controller class. As a consequence,
any change on the policy (e.g., “QA engineers also can delete tickets”) implies a change
and recompilation in the code.

A better approach would be to have the authorization attribute delegate the authoriza‐
tion decision to an external component, which could then be evolved and deployed
independently. One way to achieve this is by using the claims authorization manager
concept, provided in .NET 4.5 via the ClaimsAuthorizationManager base class and
summarized in Example 15-13. The main role of this task is to perform authorization
decisions via its CheckAccess method. By default, it always returns true, but derived
classes can override it to implement custom authorization policies.

Example 15-13. The ClaimsAuthorizationManager base class
public class ClaimsAuthorizationManager : ICustomIdentityConfiguration
{
        public virtual bool CheckAccess(AuthorizationContext context)
        {
          return true;
        }
        ...
}

The CheckAccess method receives an AuthorizationContext class, described in
Example 15-14, representing an access via the (subject, action, resource) triple, where
the subject is represented by a ClaimsPrincipal. Interestingly, both the action and the
resource are also represented as claims. Note also that this class is decoupled from the
authorization enforcement mechanism. Namely, it is not tied to Web API or other sim‐
ilar technology.

Example 15-14. The AuthorizationContext class, characterizing an access
public class AuthorizationContext
{
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        public ClaimsPrincipal Principal
        {
                get {...}
        }

        public Collection<Claim> Action
        {
                get {...}
        }

        public Collection<Claim> Resource
        {
                get {...}
        }

        public AuthorizationContext(ClaimsPrincipal principal,
                                    Collection<Claim> resource,
                                    Collection<Claim> action)
        {...}
}

The Thinktecture.IdentityModel.45 library provides a ClaimsAuthorizeAttri
bute that uses this strategy: when the Web API runtime calls this attribute to check
whether the request is allowed, the attribute delegates this decision to the registered
singleton ClaimsAuthorizationManager. The call to the ClaimsAuthorizeAttribute
contains an authorization context with the request’s claims principal, action name, and
controller name. Example 15-15 shows a custom authorization manager, evaluating the
same authorization policy as the one defined in Example 15-12. The main difference is
that the policy is now externalized to a separate component that can be evolved and
built independently.

Example 15-15. A custom ClaimsAuthorizationManager class
public class CustomPolicyClaimsAuthorizationManager : ClaimsAuthorizationManager
{
    public override bool CheckAccess(AuthorizationContext context)
    {
        var subject = context.Principal;
        var method = context.Action
            .First(c => c.Type == ClaimsAuthorization.ActionType).Value;
        var controller = context.Resource
            .First(c => c.Type == ClaimsAuthorization.ResourceType).Value;

        if (controller == "ClaimsResource")
        {
            if (method.Equals("GET", StringComparison.OrdinalIgnoreCase))
                return true;

            if (method.Equals("DELETE", StringComparison.OrdinalIgnoreCase)
                    && !subject.IsInRole("ProjectManager"))
                return false;
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            return subject.Identity.IsAuthenticated;
        }
        return false;
    }
}

We will return to the subject of authorization in the next chapter, where we describe the
OAuth 2.0 Framework. Until then, we shift our focus to a different kind of authorization:
controlling browser access to cross-origin resources.

Cross-Origin Resource Sharing
User agents, such as browsers, combine and process content (e.g., HTML documents
and script programs) from multiple sources. Typically, these sources have different
trustworthiness levels, and may include malicious sites trying to compromise both the
confidentiality and integrity of other sites’ content. The same-origin policy is a set of
security polices enforced by user agents, which uses the content’s origin to impose re‐
strictions on how these contents can interact, namely via the user agent internal APIs
(e.g., DOM access and networking).

The origin concept, described by RFC 6454, groups URIs based on their scheme, host,
and port. Simplifying a little, two URIs have the same origin if they have the same
(scheme, host, port) triple. For instance, http://example.com/ and http://example.com:
80/path have the same origin; however, http://example.com and http://www.exam‐
ple.com have different origins.

The XMLHttpRequest API is an example of a user agent API using the same-origin policy.
When a request is initiated via the open method, the XMLHttpRequest object compares
the origin of both:

• The requested URI
• The URI of the document that instantiated the XMLHttpRequest

The request is allowed only if these two URIs have the same origin, thereby forbidding
cross-origin requests.

Same-origin policies are particularly important for browser contexts, due to the way
cookie-based credentials are automatically attached to every sent request. For instance,
if a browser has valid authentication cookies for https://banking.example.net, these
cookies will be automatically attached to any request to that origin. As a consequence,
if a malicious script from an external origin were allowed to perform a request on https://
banking.example.net, that request would automatically be authenticated and the script
would have access to protected resources on https://banking.example.net. Same-origin
policies are a method to protect against this type of attack.
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However, the cross-origin request limitation also forbids some legitimate scenarios,
where a resource would like to authorize access by contents from other origins. Cross-
Origin Resource Sharing (CORS) is a W3C recommendation that enables this scenario,
by defining a mechanism to permit cross-origin requests subject to authorization by
the accessed resource. It is based on additional HTTP request and response headers, as
well as a set of processing rules for user agents, namely for CORS-enabled XMLHttpRe
quest implementations.

Briefly, the CORS specification stipulates that a cross-origin request should be executed
by XMLHttpRequest in one of two ways. With the simple cross-origin request algorithm,
requests are preemptively sent but the results are made visible to the calling script only
if explicitly authorized by the resource. With the cross-origin request with preflight al‐
gorithm, a OPTIONS request (the preflight) is previously performed to query the resource
if it authorizes the cross-origin request. The original request is performed only if the
response to this query is positive.

The simple algorithm is an optimization applied only to cross-origin requests that could
already be made by a script even without CORS. For instance, a script program can use
dynamically generated and submitted HTML forms to initiate cross-origin GET or POST
requests. This means that resources must already be prepared to correctly handle attacks
based on this feature, commonly named cross-site request forgery (CSRF) attacks. In
this case, a CORS-enabled XMLHttpRequest just has to ensure that the request’s response
is not visible to the script, except if explicitly authorized by the resource.

A cross-origin request can use the simple algorithm if:

• The request method is GET, HEAD, or POST (the so-called simple methods).
• The headers explicitly added by the script to the request are all simple headers

(Accept, Accept-Language, Content-Language, or Content-Type).
• The content type is application/x-www-form-urlencoded, multipart/form-
data, or text/plain.

For instance, consider a script running on a document loaded from http://www.exam‐
ple.net that wants to access a resource located at https://api.example.net, using the
XMLHttpRequest API (different origin because the hostname and the scheme are dif‐
ferent). If all the simple algorithm restrictions are met, then a CORS-enabled user agent
preemptively sends the request, adding an Origin header with the document’s origin
(http://www.example.net):

GET https://api.example.net/api/resource HTTP/1.1
Host: api.example.net
Origin: http://www.example.net
Referer: http://www.example.net/
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It is now the responsibility of the resource to evaluate whether the access is authorized
for the http://www.example.net/ origin. If so, the response must contain an Access-
Control-Allow-Origin granting access to that origin:

HTTP/1.1 200 OK
Content-Length: 23
Content-Type: text/plain; charset=utf-8
Access-Control-Allow-Origin: http://www.example.net

resource representation

When the user agent receives this response and confirms that it contains an Access-
Control-Allow-Origin with the requester’s origin, it presents the response to the calling
script. If the response’s Access-Control-Allow-Origin is absent or does not include
the caller’s origin, then a network error is signaled to the calling script. Note that if the
resource is not CORS-aware, the response will not contain the Access-Control-Allow-
Origin and the user agent will interpret that as a denied authorization.

If any of the simple algorithm conditions does not hold (e.g., the request uses the PUT
or DELETE method), the CORS specification uses a preflight request, wherein the user
agent first performs an OPTIONS request on the resource to check whether a cross-origin
request is authorized. This request contains an Origin header with the caller origin as
well as an Access-Control-Request-Method with the required HTTP method:

OPTIONS https://api.example.net/api/resource HTTP/1.1
Host: api.example.net
Access-Control-Request-Method: PUT
Origin: http://www.example.net
Access-Control-Request-Headers: origin
Referer: http://www.example.net/

A CORS-aware resource uses this origin and method information to evaluate if the
cross-origin is allowed. If so, it produces a response message containing both the
Access-Control-Allow-Origin and the Access-Control-Allow-Methods headers:

HTTP/1.1 200 OK
Access-Control-Allow-Origin: http://www.example.net
Access-Control-Allow-Methods: PUT
Content-Length: 0

Only after receiving this response allowing the access does the user agent perform the
original request:

PUT https://api.example.net/api/resource HTTP/1.1
Host: api.example.net
Connection: keep-alive
Origin: http://www.example.net
Referer: http://www.example.net/
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Once again, the response is made visible to the calling script only if it includes the
Access-Control-Allow-Origin header with the script’s origin.

HTTP/1.1 204 No Content
Access-Control-Allow-Origin: http://www.example.net

For optimization purposes, the resource can also include an Access-Control-Max-
Age in the preflight response, allowing the user agent to cache this response on a preflight
result cache for the time defined by this header. This feature helps to reduce the number
of preflight requests needed.

CORS Support on ASP.NET Web API
ASP.NET Web API version 2.0 adds support for the CORS specification by providing
abstractions to define cross-origin policies and mechanisms to enforce them. Globally,
you activate cross-origin support by calling the EnableCors extension method on the
HttpConfiguration object:

config.EnableCors();

Then, you can use the EnableCorsAttribute to explicitly annotate the controllers or
actions on which CORS support should be enabled:

[EnableCors(...)]
public class ResourceController : ApiController
{
        ...
}

You can also define the cross-origin support globally by passing an EnableCorsAttri
bute instance to the EnableCors method:

config.EnableCors(new EnableCorsAttribute(...));

The EnableCorsAttribute not only enables but also defines the allowed cross-origin
policy (for instance, the set of allowed origins or request methods). For that, this attribute
is parameterized in its constructor with the allowed origins, the allowed request meth‐
ods, and the allowed and exposed headers. It is also possible to define the preflight max
age:

[EnableCors(origins:"https://localhost", headers:"*", methods:"GET",
    PreflightMaxAge = 60)]
public class ResourceController : ApiController
{
    ...
}

As expected, the policies defined by attributes targeting actions have higher precedence
that those defined by attributes targeting controller classes. The attribute passed into
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config.EnableCors will define the default policy, applied when the request’s controller
and action don’t have any associated policy.

Despite this simple attribute model, under the hood Web API has an extensible infra‐
structure, displayed in Figure 15-13, allowing alternate ways for cross-origin policy
definition.

Figure 15-13. CORS runtime

Cross-origin policy is enforced by the CorsMessageHandler, inserted in the request
pipeline by the EnableCors method. When an HTTP request reaches it, this handler
checks the Origin header to see if it is CORS enabled. If so, the handler builds a Cors
RequestContext with the CORS-related request information:

public class CorsRequestContext
{
    public Uri RequestUri { get; set; }
    public string HttpMethod { get; set; }
    public string Origin { get; set; }
    public string Host { get; set; }
    public string AccessControlRequestMethod { get; set; }
    public bool IsPreflight {get;}
    // ...
}

Afterward, it uses the ICorsPolicyProviderFactory registered in the configuration to
try to locate the policy provider, which then provides the policy for the request:

public interface ICorsPolicyProviderFactory
{
    ICorsPolicyProvider GetCorsPolicyProvider(HttpRequestMessage request);
}

public interface ICorsPolicyProvider
{
    Task<CorsPolicy> GetCorsPolicyAsync(HttpRequestMessage request,
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        CancellationToken cancellationToken);
}

This double indirection is required because the factory is statically defined, while the
policy provider may be different for each request.

The cross-origin policy is just an instance of the following value class:

public class CorsPolicy
{
    public bool AllowAnyHeader { get; set; }
    public bool AllowAnyMethod { get; set; }
    public bool AllowAnyOrigin { get; set; }
    public IList<string> ExposedHeaders { get; private set; }
    public IList<string> Headers { get; private set; }
    public IList<string> Methods { get; private set; }
    public IList<string> Origins { get; private set; }
    public long? PreflightMaxAge { get; set; }
    public bool SupportsCredentials { get; set; }
}

The CorsMessageHandler uses this CorsPolicy to convert the request’s CorsRequest
Context into a CorsResult that will then be applied to the HTTP response. So, by
defining a new ICorsPolicyProviderFactory and registering it in the configuration
(there’s a SetCorsPolicyProviderFactory extension method for that), it is possible to
completely change the way the CORS policy is defined.

By default, the ICorsPolicyProviderFactory interface is implemented by the Attrib
uteBasedPolicyProviderFactory class, which looks into the controller and action de‐
scriptors for the presence of the EnableCorsAttribute instances. The way this is done
depends on the CORS request type. For nonpreflight requests, the handler first forwards
the request up the stack to its inner handler. When the response is finally returned, it
uses the selected action descriptor (saved into a request property) to find out if there is
any EnableCorsAttribute associated with the action or the controller. If so, it uses it
to obtain the policy—EnableCorsAttribute implements ICorsPolicyProvider—and
then applies the resulting CorsResult into the returned response. This will enrich the
returned response message with the extra CORS headers.

However, for preflight requests, the behavior is slightly different. Remember that these
are requests using the Options HTTP method, meant to probe the server for CORS
support on a given request URI and method pair (the method is passed on the Access-
Control-Request-Method). Namely, no action should be ever called when handling
such requests. So, when a preflight request is received, the CorsMessageHandler replaces
the OPTIONS method with the one in the Access-Control-Request-Method, and then
uses the Web API resolution services to find the controller and action mapped to the
request. However, this controller and action are never called. Instead, they are just used
to locate and extract the CORS policy (provided by the EnableCorsAttribute). Finally,
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the preflight response is created and returned, short-circuiting any upper stack pro‐
cessing. In short, these preflight requests never reach the controller layer.

Conclusion
In this chapter, we described some of the security concerns that you must address when
designing, implementing, and consuming Web APIs. Our focus was on the security
concepts and technologies that are specific to Web APIs: transport security, authenti‐
cation, and authorization. We continue with the security theme in the next chapter,
where we address the OAuth 2.0 Framework. However, there are other security subjects
that shouldn’t be neglected, despite not being a subject of this book. Similar to web
applications, most of the time a Web API is a connector between the public Internet
and business-critical internal systems. So, secure coding practices such as input valida‐
tion, proper output encoding, and *-injection mitigation (e.g., SQL injection) are still
critically important.
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CHAPTER 16

The OAuth 2.0 Authorization Framework

Delegata potestas non potest delegari.

The OAuth 2.0 Authorization Framework, defined by RFC 6749, is an evolution of the
OAuth 1.0 protocol. At the time of writing, it is used by several popular Web APIs such
as the Google APIs, Facebook, and GitHub. Its main usage scenario is delegated con‐
strained authorization. As an example, consider the fictional scenario depicted in
Figure 16-1.

Figure 16-1. Delegated authorization scenario

In the figure, you can see that:

• storecode.example is a website for storing and managing code repositories, with an
associated Web API.
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• checkcode.example is a service for building and analyzing code, providing func‐
tionalities such as continuous integration, coding rules checking, error estimation,
and test coverage.

• Alice uses the storecode.example site to store and manage her private code.

Alice wants to use the checkcode.example service to analyze the code she’s stored at
storecode.example. The fact that storecode.example provides an API is an important
enabler for this scenario, but a problem remains: how can Alice allow checkcode.exam‐
ple to access some of her private code repositories?

A solution to this problem would be for Alice to provide her storecode.example cre‐
dentials (e.g., username and password) to checkcode.example, so that this service could
access her private code. However, this solution has several disadvantages:

• With these credentials, the checkcode.example service can do any action allowed for
Alice, including accessing all her code and also changing it. In other words, this
solution grants the checkcode.example unconstrained authorization over store‐
code.example.

• A compromise of the checkcode.example service would reveal Alice’s password, al‐
lowing an attacker to have full access to her resources.

• The only way for Alice to revoke the checkcode.example access would be for her to
change her credentials. As a side effect, all other applications that are authorized to
access Alice’s code (e.g., www.hostcode.example, a hosting service) would also have
their access revoked.

A better solution is for Alice to grant checkcode.example a constrained authorization
that allows this service to perform only a subset of operations (e.g., read from the master
branch of only one repository), for a delimited time period. Alice should also be able
to revoke this authorization grant at any time, without disturbing other services that
access her resources.

Less Fictional Scenarios
For less fictional examples, as we write, both the AppHarbor PaaS (platform as a ser‐
vice) and the Travis CI continuous integration service use OAuth 2.0 and delegated
authorization to integrate with GitHub repositories.

This previous example illustrates the inadequacy of the simple client-server model to
express the authorization requirements of Web APIs. Namely, since a Web API is an
interface for application consumption, the distinction between client applications and
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human users is an important feature of an authorization model. Following this, the
OAuth 2.0 Framework introduces a model with four roles:

• Alice plays the resource owner role—the entity owning or able to grant authoriza‐
tions to a protected resource. In the remainder of this chapter, we will refer to the
resource owner as simply the user.

• storecode.example plays the resource server role—the entity that provides the inter‐
face for accessing the protected resources.

• checkcode.example plays the client role—the application accessing the protected
resource on behalf of the resource owner.

• The authorization server is a fourth role, and is responsible for managing authori‐
zations and access grants. Typically, this role is also played by the resource server.
However, the OAuth 2.0 Framework allows for separate deployments of these roles.

One of the main aspects of this model is that user and client are not synonymous in this
scenario. Instead, they are separate entities, each one having its own well-defined iden‐
tity and most of the time belonging to different security boundaries. For instance, access
to a protected resource is frequently associated with the resource owner (the user) and
the application performing the access (the client) on its behalf. This is a distinctive
feature of this model when compared to the simpler client-server scenarios addressed
previously. However, despite the focus on delegated authorization and on the user-client-
server model, the OAuth 2.0 Framework also supports simpler scenarios where the client
is acting on its own behalf and there isn’t a user involved.

Thinktecture Authorization Server
Thinktecture Authorization Server is an open source OAuth 2.0 authorization server,
written in C# over the .NET platform. It is decoupled from specific resource servers and
user identity providers, making it usable on a wide range of scenarios. Being open source
also makes it a good learning source for OAuth 2.0 design and implementation aspects.
For that reason, in this chapter, we will be using Thinktecture Authorization Server as
a source of illustrative examples. For simplicity, we will refer to it simply as T.AS.
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Client Applications
The OAuth 2.0 Framework aims to be usable with different kinds of client applications,
such as:

• Classic server-side web applications
• Native applications, particularly mobile ones
• JavaScript-based, client-side web applications, such as single-page applications

(SPA)

This wide range of client types presents different challenges, particularly concerning
the long-term storage of authentication secrets. To be able to participate in an OAuth
2.0 deployment, a client must be previously registered on the authorization server. In a
typical OAuth 2.0 scenario, the client owner provides a set of information, such as:

• Descriptive information, intended for human consumption, such as the application
name, logos, home page, or version information

• Technical information, used on the protocol steps, such as redirect URIs or required
authorization scopes

On the other hand, the authorization server assigns a client_id string to the client,
uniquely identifying it. Some clients may also receive a client_secret string that allows
them to authenticate to the authorization server during some protocol steps. In this
context, the OAuth 2.0 divides clients into two types:

• Confidential clients can securely store the client_secret and use it in protocol
steps. The typical example is classic server-side web applications, where the client
credentials are stored on the server side.

• Public clients aren’t able to securely store credentials. These clients don’t have cli
ent_secret, but they still have an assigned client_id. A typical example is client-
side JavaScript applications, which are unable to securely store long-term secrets,
since they are executed entirely in the user’s browser.

Clients are typically classified as confidential or public during registration, based on the
input provided by the client owner.

At the time of this writing, the typical scenario is for the client owner to register via web
forms, such as the one shown in Figure 16-2.
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Figure 16-2. Client registration form at GitHub (2013)

However, a specification to define the dynamic registration of clients, using a Web API,
is also being developed by the OAuth IETF working group.

An authorization server can also associate authorization polices with a registered client,
limiting its permissions. As an example, Figure 16-3 depicts the T.AS class model for
representing clients, where we can see that a client is associated with:

• The OAuth 2.0 flow where it can participate
• The set of authorizations—named scopes, as we will see shortly—that can be dele‐

gated to it
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1. See RFC 6750.

Figure 16-3. T.AS class model for clients

Accessing Protected Resources
In the OAuth 2.0 Framework, a client’s access to a protected resource must include an
access token, as illustrated in Figure 16-4. At the time of writing, the framework defines
only bearer token usage,1 meaning that the access token is simply added to the request
message without any further binding. As we have seen before, bearer tokens are simpler
to use but have several security drawbacks. In particular, they should always be used
with transport security and the client must ensure that they are sent only to the associated
resource server. Because of these limitations, the OAuth IETF group is also working on
a specification for MAC-based access tokens: the use of the access token must be com‐
bined with the proof of possession of a cryptographic key, via the computation of a MAC
(message authentication code).

Figure 16-4. Accessing resources using access tokens
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2. The implicit flow is an exception to this rule; the token is not obtained from the token endpoint.

The access_token is a representation of an authorization grant and is used by the re‐
source server to obtain information about the requester, namely to enforce the resource’s
authorization policy. This may sound rather vague, but we will return to this subject
later in the chapter and provide concrete examples of access tokens and of the contained
information. We will also see how an ASP.NET-based resource server can extract a token
from the request message and transform it into identity and authorization information.

The recommended way of binding a access token to a request message is by using the
Authorization header with the Bearer scheme:

GET https://storecode.example/resource HTTP/1.1
Authorization: Bearer the.access.token

This recommended method follows the generic HTTP authentication framework, pre‐
sented in Chapter 1. However, it’s also possible to send the access token in an applica
tion/x-www-form-urlencoded body or in the request URI query string, using the ac
cess_token field, but it’s not recommended. The use of access tokens in request URIs
is particularly sensitive, since this information is typically logged and therefore can
easily be leaked.

Obtaining Access Tokens
A client application obtains access tokens by requesting them from the token end‐
point, which is part of the authorization server, as illustrated by Figure 16-5.2 The token
request includes an authorization grant, which is an abstract concept representing the
information on which the authorization decision is based. This authorization grant can
take multiple implementations.
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Figure 16-5. Obtaining access tokens using the token endpoint of the authorization
server

In simple scenarios, where the client application is accessing the resource server on its
own behalf (there is no user involved), the authorization grant can just be the client
credentials. In OAuth 2.0 terminology, this is called the client credentials grant flow—
the authorization is completely based on the client credentials. This option requires the
client to be of the confidential type—that is, to have an assigned client_secret.

If there is a user involved, this authorization grant can be based on the user’s password
credentials, provided by the user to the client, as depicted in Figure 16-6.

Figure 16-6. Obtaining access tokens based on the user’s password credentials

This is called the resource owner password credentials grant flow in the OAuth 2.0
Framework. At first sight, the availability of this option in OAuth 2.0 may seem unrea‐
sonable, since one of its goals was to avoid this exact credentials disclosure. However,
it can make sense in some scenarios, particularly when the user has a high trust level on
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the client application (e.g., enterprise scenarios). First, in OAuth 2.0, the password does
not need to be persisted by the client application and used on every request. Instead, it
is just used to request the access token and can be removed immediately after. So, if the
user changes the password, the access token may remain valid. Another advantage of
this authorization grant type is that it is simpler to implement than the alternatives,
especially when the client is a native mobile application.

Another option is the use of an authorization code that represents a delegated author‐
ization performed by the user without revealing her password. This option is called
authorization code grant flow and will be described in detail in the next section.

The token request is handled via a POST to the token endpoint URI with an applica
tion/x-www-form-urlencoded body containing the authorization grant type and val‐
ues. For instance, on the authorization code grant flow, the grant type is authoriza
tion_code and the grant value is the authorization code:

POST https://authzserver.example/token_endpoint HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: authzserver.example

grant_type=authorization_code&
code=the.authorization.code

If the client is confidential (the client has an assigned client_secret), this token request
must also include client authentication information. The OAuth 2.0 Framework defines
two alternatives for this:

• Using the Basic HTTP authentication scheme, where the client_id and the cli
ent_secret are used as the username and password, respectively

• Inserting the client_id and client_secret as fields of the token request body

If the request is successful, the response contains a application/json body including
the access token value, its type (e.g., bearer), and validity:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Cache-Control: private, max-age=0, must-revalidate

{"access_token":"the.access.token","token_type":"bearer", "expires_in":3600,
        ... other info ...}

Authorization Code Grant
The authorization code grant provides a way for a user to delegate a constrained au‐
thorization to a client application, without revealing his credentials to the client. Instead,
the user interacts directly with the authorization endpoint of the authorization server
via a user agent (e.g., a web browser or web view). This flow starts with the client ap‐
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plication redirecting the user agent to this authorization endpoint, as shown in
Figure 16-7. The client uses the query string of the authorization endpoint request URI
to embed a set of authorization request parameters:

https://authzserver.example/authorization_endpoint?
  client_id=the.client.id&
  scope=user+repo&
  state=crCMc3d0acGdDiNnXJigpQ%3d%3d&
  response_type=code&
  redirect_uri=https%3a%2f%2fclient.example%2fcallback&

Figure 16-7. Requesting authorization grant from the authorization endpoint of the au‐
thorization server

For instance, the response_type parameter defines the authorization grant that is being
requested, since the authorization endpoint can be used with a different flow, while the
scope parameter characterizes the authorization that is being requested. After receiving
this request, the authorization server starts an out-of-protocol user interaction with the
aim of authenticating the user and optionally requesting her consent for the client re‐
quested authorization.
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Figure 16-8. Direct interaction between the user and the authorization endpoint for au‐
thentication and authorization consent

The user authentication protocol is not defined by the OAuth 2.0 protocol, leaving the
authorization server free to choose the most appropriate one, ranging from a simple
form-based username and password scheme to a distributed federation protocol.

After a successful authentication, the authorization server can also ask the user if she
consents to the authorization requested by the client application. Here, the authorization
server uses the client’s descriptive information (e.g., application name, logo, and home
URI), defined during the registration process, to better inform the user. Finally, the
authorization server redirects the user to the client application, using the value of the
redirect_uri request parameter, with an authorization code embedded in the request
URI, as depicted in Figure 16-9 and in the following URI:

https://client.example/callback?
  code=52...e4&
  state=cr...3D

For security reasons, the set of redirect URIs used by a client should be preconfigured.
T.AS does exactly that, as shown earlier in Figure 16-3, where each client is related to a
collection of redirect URIs.
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Figure 16-9. Authorization endpoint response containing the authorization grant

A final flow of the OAuth 2.0 Framework, named implicit grant, returns the access token
immediately in the authorization response from the authorization endpoint. This is the
only OAuth 2.0 flow where the access token is not returned from the token endpoint.

OAuth 2.0 Authorization Code Flow Example
The OAuth2.Demos.AuthzCodeGrant repository, available at https://github.com/weba‐
pibook, contains a console self-hosted OAuth 2.0 client application that uses the au‐
thorization code flow. It is preconfigured to use GitHub API v3, but can be used with
another authorization server and resource server. To use it with the GitHub API, just
provision a “developer application” at the GitHub “account settings” and assign the
client_id and client_secret in the code. This sample is highly commented and can
also be used to capture the OAuth 2.0 protocol messages.

Scope
As stated before, one of the goals of OAuth 2.0 is to allow clients to access resources,
under a constrained authorization, eventually delegated by a user. For this, the frame‐
work uses the concept of scope as a way to define these authorization constraints. For‐
mally, a scope is a list of space-delimited identifiers, where each one defines a type of
authorization. For instance, the following is a list of some scope identifiers used by the
GitHub Web API:

• user authorizes the client to read/write to the user’s profile information.
• user:email authorizes the client to read the user’s email.
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• public_repo authorizes the client to read/write to the user’s public repositories.

This means that the string user:email public_repo defines a scope with the read email
authorization and the read/write repositories authorization.

Typically, these scope identifiers and associated semantics are defined by the resource
servers. They typically also have an associated human-readable description, used when
presenting users with authorization consent forms.

As an example, in T.AS a scope is modeled by the following fields, as shown in
Figure 16-3:

• The scope identifier
• The scope display name and description, used for human interface purposes, such

as when requesting the user’s authorization consent
• The list of clients allowed to request this scope

The set of scopes available for a client may be restricted, as also shown in Figure 16-3.

Scopes are intensively used by the protocol, typically via a scope parameter. When using
the client credentials or resource owner password grants, the client can include the scope
parameter in the token request sent to the token endpoint, as a way to define the request
authorization. Similarly, when using the authorization code or implicit grant flows, the
client can include the scope parameter in the authorization request sent to the author‐
ization endpoint. The authorization server is free to concede an authorization scope
that is different from the one requested, namely based on the user’s consent. Accordingly,
the scope parameter is also present on the token response to inform the client of the
granted authorizations.

Front Channel Versus Back Channel
To better understand the OAuth 2.0 Framework, it is important to realize that the client
communicates with the authorization server in two distinct ways: via the back chan‐
nel and via the front channel. The back channel is the direct communication between
the client and the token endpoint, such as the one depicted in Figure 16-5, whereas the
front channel is the indirect communication between the client and the authorization
endpoint via the user’s agent and based on HTTP redirects (Figure 16-7). Therefore,
the front channel has some significant limitations. Since it’s based on redirects, it im‐
poses restrictions on the HTTP features that can be used. The request method must be
a GET, and the request information must be passed in the request URI, namely in the
URI’s query string:

https://authz_server.example/authorization_endpoint?
  client_id=the.client.id&
  scope=user+repo&
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  state=crCMc3d0acGdDiNnXJigpQ%3d%3d&
  response_type=code&
  redirect_uri=https%3a%2f%2fclient.example%2fcallback&

Also, the response must always be a redirect, so the response information is also passed
in the redirected request URI:

https://client.example/callback?
  code=52...e4&
  state=cr...3D

In case of error, the standard HTTP status codes cannot be used (the response must
always be a redirect). Instead, the error and error_description parameters are used
to convey this information on the URI’s query string:

https://client.example/callback?
  error=access_denied&
  error_description=authorization+not+granted

Also, because the front channel runs via the user agent, it is not safe for the client cre‐
dentials (client_secret) transmission, since then they would be visible to the user.
Thus, in all front-channel requests the client is identified (the client_id is sent) but
not authenticated. Since the client_id is public, it is very easy for an attacker to forge
valid authorization requests.

Finally, the front channel also does not ensure any correlation between the requests
from the client to the authorization server and the corresponding responses. It is subject
to CSRF (cross-site request forgery) attacks, where a third-party malicious site instructs
the user’s browser to make a request back to the client, thereby simulating an OAuth
2.0 front-channel response. Using this technique, the attacking site can control the ac‐
cess token that will be used by the client—for instance, by using an authorization code
issued to the attacker account.

To address this, the OAuth 2.0 Framework uses a state parameter, present in both the
request and the response, to ensure this correlation. The client creates a random state
value and includes it in the request via the front channel. At the end, the authorization
server includes the same value in the response returned via the front channel. This way,
the client has a mechanism to correlate a received response with a previous request.
RFC 6819—OAuth 2.0 Threat Model and Security Considerations—provides more in‐
formation on how to adequately use this protection mechanism.

With all these restrictions and problems, you may wonder why the front channel is used
at all. The main reason is that it allows for the authorization server to directly interact
with the user, without any client intervention or visibility. Figure 16-8 shows how this
feature can be used for the authorization server to authenticate the user and ask for her
consent.
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On the other hand, since the back channel connects the client directly to the token
endpoint, the protocol is not limited to HTTP redirects. For instance, the token request
is a POST HTTP request where the parameters are represented in the body and the
response may use HTTP status codes to represent different error conditions (e.g., 400
for a bad request or 401 for invalid client authentication).

If the client possesses a client_secret (confidential client), it must use it in the back
channel to authenticate itself. For that purpose, the OAuth 2.0 Framework recommends
using the HTTP basic scheme, where the username and password are replaced by the
client_id and client_secret, respectively:

POST https://authz_server.example/token_endpoint HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Authorization: Basic dGhlLmNsaWVudC5pZDp0aGUuY2xpZW50LnNlY3JldA==
Host: authz_server.example

grant_type=authorization_code&
code=the.authorization.code

Back Channel and Front Channel
The terms back channel and front channel are not really used by the OAuth 2.0 RFCs.
Instead, we borrowed these terms from the SAML glossary because we think they are
really useful for describing the different ways in which the client communicates with
the authorization server.

Refresh Tokens
Because bearer access tokens are very sensitive, their usage lifetime should be limited.
To address that, the OAuth 2.0 Framework includes refresh tokens, which can be used
to obtain new access tokens. When an authorization grant is exchanged for the access
token at the token endpoint, the response may also include a refresh token:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Cache-Control: private, max-age=0, must-revalidate

{"access_token":"the.access.token","token_type":"bearer", "expires_in":3600,
 "refresh_token":"the.refresh.token"}

The client application can use this refresh token to obtain a new access token—for
instance, when the older one is about to expire. This is also done by using the token
endpoint, with the refresh_token value on the grant_type field:

POST https://authzserver.example/token_endpoint HTTP/1.1
Content-Type: application/x-www-form-urlencoded
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Host: authzserver.example

grant_type=refresh_token&
refresh_token=the.refresh.token

A successful response will include the new access token and associated lifetime. It can
also contain a new refresh token.

The use of refresh tokens imposes additional requirements on a client application, which
will have to securely store this new information, monitor the access token lifetime, and
refresh it periodically. However, refresh tokens have some useful properties. From a
security viewpoint, reducing the access token lifetime limits the consequences of ma‐
licious access to this information.

From an implementation and optimization viewpoint, the use of refresh tokens allows
hybrid approaches wherein refresh tokens are revocable artifact tokens, pointing to
entries on a repository, while access tokens are short-lived and nonrevocable stateful
assertions. This makes access token verification more easily scalable, since no repository
access is required. The fact that they are nonrevocable is compensated for by their
reduced lifetime. On the other hand, you can easily revoke refresh tokens by simply
removing or disabling the associated entry in the repository.

Resource Server and Authorization Server
The OAuth 2.0 Framework explicitly identifies two server-side responsibilities:

• The resource server exposes the HTTP interface to the protected resources and is a
consumer of access tokens.

• The authorization server is responsible, among other things, for issuing the access
tokens that are used in the protected resource access.

This does not mean that the resource server and the authorization server must be two
independent entities. It is perfectly acceptable for these two roles to be implemented by
the same physical servers and software component. However, the framework does allow
decoupled architectures in which the authorization server is run by a separate software
component (e.g., Thinktecture Authorization Server). It is even possible for a resource
server to rely on an external authorization server run by another entity (e.g., Windows
Azure Active Directory).

Despite allowing for these decoupled architectures, the OAuth 2.0 Framework does not
specify how separate resource servers and authorization servers can cooperate. Aspects
such as access token format and validation procedures are left completely open by the
OAuth 2.0 Framework and must be defined for each scenario. Note that from a user or
client viewpoint, this does not have any impact, since the access tokens are meant to be
opaque to these parties.
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Also, the information conveyed by the authorization server to the resource server, via
the access token, is left undefined by the OAuth 2.0 Framework. The immediate option
is for this to be a representation of the token request and associated grant, including:

• The resource owner identity, when the client is not accessing on its own behalf
• The requesting client, identified by its client_id
• The requested authorization scope, identified by a scope string

The information associated with an access token should also include its temporal val‐
idity (tokens are not valid forever) and the token audience; that is, some identification
of the resource server for whom the token was issued.

As an example, T.AS uses the JWT format to represent access tokens. Example 16-1
shows the payload of such a JWT token, containing:

• The sub claim, with the user unique identifier, as well as the role claim containing
additional user’s claims

• The client_id claim, with the client application identity
• The scope claim, with the granted authorization scope

The token payload also contains the issuer identity (iss claim) and the token’s intended
destination or audience (aud claim).

Example 16-1. JWT payload of an access token issued by the Thinktecture Authoriza‐
tionServer
{
    "exp": 1379284015,
    "aud": "http://resourceserver.example",
    "iss": "http://authzserver.example",
    "role": [
            "fictional_character",
            "student"
    ],
    "client_id": "client2",
    "scope": [
            "scope1",
            "scope2"
    ],
    "nbf": 1379280415,
    "sub": "Alice"
}

As illustrated by Example 16-1 with the inclusion of the role claim, the user’s identity
can be more than just a simple identifier, which fits nicely into the claims model pre‐
sented in “The Claims Model” on page 358.
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Processing Access Tokens in ASP.NET Web API
As noted in “Katana Authentication Middleware” on page 378, the Katana project in‐
cludes a set of authentication middleware classes. One of these classes is the OAuthBear
erAuthenticationMiddleware, which implements the OAuth 2.0 Bearer scheme. The
OAuthBearerAuthenticationMiddleware behavior is configured via the OAuthBearer
AuthenticationOptions class, depicted in Figure 16-10. When a request is received,
the associated authentication handler performs the following steps:

1. Token extraction. If the request contains an Authorization header with the Bear
er scheme, then its value is used as the access token. Otherwise, the authentication
method returns without any identity.

2. Authentication ticket extraction. After the token is obtained from the message, the
Options.AccessTokenFormat.Unprotect method is used to extract an authenti‐
cation ticket from the access token. As we saw before, this ticket contains both a
claims-based identity and additional authentication properties.

3. Authentication ticket validation. Finally, the ticket’s validity period is checked.

At the end, if all the steps were performed successfully, the request’s access token is
converted into a returned identity. Using both the Options.Provider and the Op
tions.AccessTokenProvider, you can customize the previous steps. For instance, if
defined, the Options.Provider can be used to retrieve the access token from other
message locations and also to validate or modify the extracted identity.

By default, Katana uses a custom access token format, coupled to its own authorization
server. However, by changing the Options.AccessTokenFormat you can also configure
Katana to accept JWT-based access tokens. The Katana’s UseJwtBearerAuthentica
tion extension method does exactly this:

1. Receives a JwtBearerAuthenticationOptions with information on how to validate
JWT tokens, including the allowed audiences and the signature validation infor‐
mation

2. Internally creates an OAuthBearerAuthenticationOptions configured with a
JwtFormat, which is an ISecureDataFormat that uses the JWT format

• Registers an OAuthBearerAuthenticationMiddleware using these options

Figure 16-10 illustrates the classes involved in this process. Taking advantage of this,
Example 16-2 shows the configuration of a Katana-based resource server:

• The AllowedAudiences property is configured with the resource server’s URI.
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• The IssuerSecurityTokenProviders property is configured with the authoriza‐
tion server symmetric signature key.

Figure 16-10. Classes for using JWT-based access tokens

Example 16-2. Configuring a Katana-based resource server to use T.AS
config.Filters.Add(new HostAuthenticationFilter("Bearer"));

app.UseJwtBearerAuthentication(new JwtBearerAuthenticationOptions
{
    AllowedAudiences = new []
    {
        "http://resourceserver.example"
    },
    IssuerSecurityTokenProviders = new []
    {
        new SymmetricKeyIssuerSecurityTokenProvider(
                "http://authzserver.example",
                "the.authorization.symmetric.signature.key")
    },

    Realm = "resourceserver.example",

    AuthenticationMode = AuthenticationMode.Passive
});
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OAuth 2.0 and Authentication
As indicated in the name of RFC 6749, the primary focus of OAuth 2.0 is authoriza‐
tion, not authentication. Its main goal is to enable client applications to access a subset
of resources exposed by a Web API, on its own behalf or on an user’s behalf. However,
implementations of this framework can also provide some forms of authentication.

As we stated at the beginning of this chapter, a request made by a client application to
a resource server contains an access token. The primary aim of this token is to prove to
the resource server that its bearer (i.e., the requesting client application) is authorized
by the user to access a protected resource. A common way to achieve this is by having
the access token:

• Authenticate the sending client application
• Authenticate the authorizing user
• Define the authorization scope

Figure 16-11 illustrates this authentication scenario, where the authorization server is
the identity provider, the resource server is the relying party, and both the client and
the user are the identity subjects. For instance, the JWT token issued by T.AS and pre‐
sented in Example 16-1 contains exactly these three pieces of information: the cli
ent_id, the user’s claims (role and sub), and the authorized scope. Note also that, when
you’re using the Katana middleware, the access token information is transformed into
an identity and propagated that way to the upper layers. However, as we’ve seen before,
the OAuth 2.0 Framework does not define the access token format and information,
leaving that as an implementation-dependent aspect. An OAuth 2.0 deployment where
the access token contains only the authorized resources and HTTP methods, without
any information about the client or the user, is perfectly conceivable. So, most of the
times an access token is also an authentication token, authenticating both the client and
user to the resource server, but this depends on the concrete implementation of the
framework.
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Figure 16-11. Access tokens as a way of authenticating clients and users to resource
servers

The OAuth 2.0 Framework can also be used as the basis for a different kind of authen‐
tication: authenticating the user to the client application. The idea is to use context-
specific resources, which we will call user info resources, that expose the user’s identity
as a way for the client to authenticate the user. Consider, for instance, the GitHub API
v3: a successful GET on the https://api.github.com/user protected resource will return a
representation with the email and the name of the user on whose behalf the used access
token was issued. This allows the client application to obtain the user’s identity, asserted
by the resource server and authorization server, as illustrated in Figure 16-12.

Figure 16-12. Protected resources as a way of authenticating users to clients

At the time of this writing, it is rather common for web applications to use this OAuth
2.0-based technique to authenticate their users against social identity providers such as
Facebook or GitHub. However, there are two shortcomings to this approach. First, it
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3. Despite its name, OpenID Connect is much more similar to OAuth 2.0 than to the classic OpenID protocol.

depends on context-specific user info resources, which aren’t defined by the OAuth 2.0
Framework. This implies that customization must be done for each different resource
server. Secondly, and most important, this authentication usage is not secure for all of
the OAuth 2.0 Framework flows—namely, the implicit flow and authorization code flow
with public clients. For instance, in some flows, it is possible for a client application to
use the authorization code or token to authenticate itself as the user on another client
application. Consider, for instance, the implicit flow, where the token is delivered di‐
rectly from the authorization endpoint to the client application via the user agent. After
receiving this token, a malicious client can now present itself as the user to a different
client and provide it with the same token. When the second client accesses the user info
resource, it will receive the identity of the original user.

The OpenID Connect specification aims to solve these two problems by providing an
identity layer on top of the OAuth 2.0 Framework.3 First, it standardizes the concept of
the user info resource (called UserInfo Endpoint in the specification) and the represen‐
tation returned by it: a JSON object whose members are claims whose meaning is also
defined by OpenID Connect. Example 16-3 shows the claims for our fictional Alice,
returned by the Google UserInfo resource located at https://www.googleapis.com/
oauth2/v3/userinfo.

Example 16-3. Representation returned by the UserInfo resource
{
 "sub": "104107606523710296052",
 "email": "alice4demos@gmail.com",
 "email_verified": true
}

OpenID Connect also extends the OAuth 2.0 token response definition, adding an
id_token field, as shown in Example 16-4. The value of this field is a signed JWT token
containing the user claims intended to be consumed by the client. Notice that this con‐
trasts with the access token, which is opaque to the client. Example 16-5 shows the
payload of a ID token containing identity claims about the user (the email claim) but
also the intended audience of the token: the aud claims, whose value is the client_id
of the relying client application. This aud field binds an ID token to a consumer, pre‐
venting a malicious client from reusing the token on another client.

Example 16-4. Token response containing an ID token
{
  "access_token" : "ya..8s",
  "token_type" : "Bearer",
  "expires_in" : 3599,
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  "id_token" : "ey..OQ"
}

Example 16-5. Payload of an ID token returned in the token response
{
    "sub": "104107606523710296052",
    "iss": "accounts.google.com",
    "email_verified": "true",
    "at_hash": "G_...hQ",
    "exp": 1380480238,
    "azp": "55...ve.apps.googleusercontent.com",
    "iat": 1380476338,
    "email": "alice4demos@gmail.com",
    "aud": "55...ve.apps.googleusercontent.com"
}

OpenID Connect Authorization Code Flow Example
The WebApiBook.Security repository, available at https://github.com/webapibook, con‐
tains a console self-hosted OpenID Connect client application that uses the authoriza‐
tion code flow. It is preconfigured to use Google authorization server, but can be used
with another OpendID Connect implementation.

By adding an identity layer upon OAuth 2.0, OpenID Connect provides an unified
protocol for a client application to:

• Authenticate its users by obtaining a signed set of identity claims
• Obtain an access token that allows the client to access protected resources on the

user’s behalf

Notice that classical identity federation protocols, such as SAML, WS-Federation, or
the classical OpenID protocol, provide only the first feature. On the other hand, the
OAuth 2.0 Framework provides only the second.

Scope-Based Authorization
When using the OAuth 2.0 Framework, you can remove the authorization decision from
the resource server and externalize it to the authorization server. As we’ve seen before,
a scope is associated with an access token to define exactly what is being authorized to
the client. So, in such a scenario, the resource server’s task is simply to enforce the
authorization decision expressed in the scope.

The Thinktecture.IdentityModel.45 library that we saw in Chapter 15 also provides
an authorization attribute with this purpose, named ScopeAttribute. This attribute
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receives an array of scope identifiers in its constructor and authorizes the request only
if the associated claims principal has scope claims matching each one of these identifiers.

Example 16-6 illustrates the ScopeAttribute: POST requests require an access token
with the create scope identifier, while DELETE requests require an access token con‐
taining the delete identifier.

Example 16-6. Using the ScopeAttribute
public class ScopeExampleResourceController : ApiController
{
    public HttpResponseMessage Get()
    {
        return new HttpResponseMessage
        {
            Content = new StringContent("resource representation")
        };
    }

    [Scope("create")]
    public HttpResponseMessage Post()
    {
        return new HttpResponseMessage()
        {
            Content = new StringContent("result representation")
        };
    }

    [Scope("delete")]
    public HttpResponseMessage Delete(string id)
    {
        return new HttpResponseMessage(HttpStatusCode.NoContent);
    }
}

Conclusion
In this chapter you were introduced to the OAuth 2.0 Authorization Framework, its
protocols, and its patterns. There are several features of this framework that we want to
highlight. First, it introduces a model where there is a clear distinction between users,
clients, and resource servers. This separation is particularly important when these three
actors belong to distinct trust boundaries and will have a profound impact on the way
we model security in web-based systems. OAuth 2.0 also introduces the authorization
server as the entity issuing and managing access tokens used by clients to access re‐
sources, namely on the user’s behalf.

As we write, most of the OAuth 2.0 deployments use authorization servers that are
coupled to the resource servers that use them. However, projects such as Thinktecture’s
Authorization Server and Windows Azure Active Directory are starting to provide au‐
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4. Bearer tokens are the only complete specification as we write this chapter; the MAC specification is still a
work in progress.

thorization servers that can be used in multiple contexts and with different resource
servers. The OAuth 2.0 Framework also provides concrete patterns and protocols for
different scenarios, ranging from clients accessing resources on their own behalf (the
client credentials grant flow) to constrained authorization delegation via front-channel
interaction (the authorization code grant flow).

OAuth 2.0 is also the foundation of the new OpenID Connect protocol, which provides
decentralized authentication capabilities. The overall result is an integrated way to solve
some of the authentication and authorization challenges on Web APIs.

Despite its significant current adoption, there are many critics of the OAuth 2.0 Frame‐
work. First, it hinders interoperability by providing so many protocol options and al‐
ternatives. This flexibility also has a negative security impact: by leaving so many options
available, it increases the probability of insecure implementations. The use of bearer
tokens4 is another relevant critique of OAuth 2.0, namely due to all the problems that
we described in Chapter 15.

However, even with these problems, the OAuth 2.0 Framework is an important part of
the current Web API security landscape.
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CHAPTER 17

Testability

The problem with troubleshooting is that trouble shoots back.

As developers, we often find ourselves in situations where we spend a significant amount
of time trying to troubleshoot issues that might occur in our Web API implementation.
In many cases, we just use a trial-and-error method with a browser or an HTTP de‐
bugger, but this sort of manual testing is time-consuming, irreproducible, and error-
prone. To make things worse, as the number of scenarios that our Web API can cover
increases, manually testing every possible path becomes a daunting task.

Over the years, different tools and practices have emerged to improve our lives as de‐
velopers. Automated testing, for example, is one of the areas in which a lot of improve‐
ment has been made. Automated testing in this context consists of creating or config‐
uring a piece of software to perform testing for us. There are some obvious advantages
with this approach: a test becomes reproducible, and it can be run at any time, or we
can even schedule it to run automatically with no interaction whatsoever.

As part of this chapter, we will explore the two most popular choices for developers to
automate software testing in ASP.NET Web API: unit testing and integration testing.
For those who are not familiar with these concepts, we have included a brief introduction
to the subject, which also mentions test-driven development (TDD) as a core practice.
Since this could be a very extensive subject, we have constrained it to ASP.NET Web
API and how you can leverage it for testing all the components you build with the
framework.

Unit Tests
A unit test is code that we typically write for verifying the expected behavior of some
other code in isolation. We start the process of writing unit tests by splitting the appli‐
cation code into discrete parts, such as class methods, that are easy to manage and can
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be tested in isolation without affecting one another. For example, in the context of
ASP.NET Web API, you might want to write different unit tests for every public method
exposed in an ApiController implementation. “In isolation” means that there is no
dependency between tests, so the order in which they run should not alter the final
result. In fact, you should be able to run all the unit tests simultaneously.

A unit test is typically organized into three parts:

1. Arrange: set one or more objects in a known state.
2. Act: manipulate the state of those objects by calling some methods on it, for

example.
3. Assert: check the results of the tests and compare them against an expected out‐

come.

As with any piece of source code, unit tests should also be treated as a development
artifact that can be stored in a source repository. By having the tests in a repository, you
can use them for multiple purposes such as documenting the expected behavior of
certain code or ensuring that behavior is still correct as different changes in the imple‐
mentation are made. They should also be easy and fast to run; otherwise, developers
would be less likely to run them.

Unit Testing Frameworks
Unit testing frameworks help simplify the process of writing unit tests by enforcing
certain aspects of the test structure and also providing tools to run them. As with any
framework, they are not something strictly necessary, but they can certainly speed up
the process of getting the unit tests done and working.

The most common unit testing frameworks used nowadays by developers are typically
part of the xUnit family, including the Visual Studio unit testing tool (which is included
in the paid version of Visual Studio), or xUnit.Net, a open source initiative that we will
use in this chapter to cover both integration testing and unit testing. Most of the frame‐
works in the xUnit family are either a direct port of JUnit or use some of its concepts
or ideas, which were initially originated and became popular in extreme programming.

Getting Started with Unit Testing in Visual Studio
To make things easier for developers, the ASP.NET team has included unit testing sup‐
port in the New Project dialog in Visual Studio for ASP.NET Web API applications, as
shown in Figure 17-1.
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Figure 17-1. New Project dialog

By selecting the Create Unit Test project checkbox, you are instructing the Visual Studio
project wizard to include a new Unit Test project using the testing framework of your
preference (the Visual Studio Unit Testing tool is the only one available by default).
When you select the Visual Studio Unit Testing tool, Visual Studio will also generate a
project with a set of unit tests for the ASP.NET Web API controllers included in the
default template. For other testing tools, this behavior will change based on the project
template definition registered in Visual Studio for that tool.

In the case of the ASP.NET Web API project template, which includes a ValuesCon
troller, you will also find the unit test counterpart in the testing project, ValuesCon
trollerTest. The code in Example 17-1 illustrates the Get method generated by Visual
Studio in that class.

Example 17-1. Unit test generated by the ASP.NET Web API project template
[TestClass]
public class ValuesControllerTest
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{
  [TestMethod]
  public void Get()
  {
    // Arrange
    ValuesController controller = new ValuesController(); // <1>

    // Act
    IEnumerable<string> result = controller.Get(); // <2>

    // Assert // <3>
    Assert.IsNotNull(result);
    Assert.AreEqual(2, result.Count());
    Assert.AreEqual("value1", result.ElementAt(0));
    Assert.AreEqual("value2", result.ElementAt(1));
  }
}

As you can see, this method is organized into Arrange, Act, and Assert parts, as we
previously discussed. In the Arrange part <1>, the ValuesController under test is in‐
stantiated, follow by the Get method invocation as part of the Act <2> and the expected
values assertions in the Assert part <3>.

The Assert class, as well as the TestClass and TestMethod attributes used by this unit
test, are part of the Visual Studio unit testing framework. You will typically find these
three with different names but similar functionality in any framework from the xUnit
family.

While Example 17-1 shows how to unit test a particular controller, you will also find
yourself writing unit tests for the rest of the components, such as the ones encapsulating
data access or business logic as well as others that make sense only in the context of a
Web API like message handlers.

xUnit.NET
xUnit.NET is another alternative in the xUnit family that began as an open source ini‐
tiative from Brad Wilson and James Newkirk, also one of the authors of NUnit, the first
port of JUnit in the .NET world. This framework was conceived with the goal of applying
many of the best practices and lessons learned from previous experiences in unit testing
and better aligning with the recent changes in the .NET platform. For example, this
framework provides a nice way to check exceptions in a test compared to the other
traditional frameworks. While most frameworks handle this scenario with the use of
attributes, xUnit.NET uses delegates, as shown in Example 17-2.

Example 17-2. A unit test for checking an expected exception
[TestClass]
public class ValuesControllerTest
{
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  [TestMethod]
  public void Get()
  {
    // Arrange
    ValuesController controller = new ValuesController();

    // Assert // <1>
    controller.Throws<HttpException>(() => controller.Get("bad")) // <2>
  }
}

As you can see in assert_throws, the Throws method provides a simple way to express
the Assert <1> and Act <2> sections in a single line, where the delegate being passed to
this method is responsible for throwing the exception.

Unit test organization
As a rule of thumb, a unit test should test only a single functionality or behavior; other‐
wise, it would be very complicated to get real feedback about what specifically was
wrong. In addition, the unit test by itself wouldn’t provide any value because it would
be hard to determine what the expected behavior should be. For that reason, unit tests
are typically organized in methods that provide fine-grained feedback. Each method
should demonstrate only one expected behavior, but it might do so by using one or more
assertions. In the case of xUnit.net, these methods must be decorated with a Fact
attribute to identify them as unit tests. You might also want to organize unit tests in
groups using different criteria, such as unit tests for a specific component or for a specific
use case. xUnit just uses classes for grouping all the tests together in what is typically
called a test suite in unit testing jargon.

The Assert class

Most xUnit frameworks, including xUnit.net, use an Assert class with common static
methods for doing comparisons or checking results using a fluent interface, which helps
to express intent explicitly. For example, if you express that the returning value of a
method call should not be null, Assert.IsNotNull(result) probably communicates
that intent better than Assert.IsTrue(result == null), but this is just a personal
preference of the developer writing the tests. All the methods in this Assert class throw
exceptions when the condition evaluates to false, making it possible to detect whether
a unit test failed.

The Role of Unit Testing in Test-Driven Development
Test-driven development (TDD) is a design technique in which you use unit tests to
drive the design of production code by writing the tests first, followed by the necessary
application code to make the tests pass. When TDD is applied correctly, the resulting
artifacts are the application code along with the unit tests describing the expected be‐
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havior, which you can also use at any time later to make sure the behavior of the pro‐
duction code is still correct. However, TDD is focused not only on using unit tests to
reduce the number of bugs in the production code, but also in improving that code’s
design. Since you are writing unit tests first, you are describing how the production
code should behave before it is actually written. You are writing the application code
that you need, and only that, with no chance of writing any unnecessary implementation.

A common mistake is to assume that writing some unit tests implies TDD. While TDD
requires unit tests for driving the design of your code, the opposite is not necessarily
true. You can write unit tests after the code is written, which is typically done for in‐
creasing the percentage of code that you have covered with tests, but that does not mean
you are using TDD, as your application code already exists.

The red and green cycle
When you are writing unit tests, the words red and green can be used as a replacement
for failure and success, respectively. These are the colors most test runners also use to
help developers quickly identify which tests are passing or failing. TDD also makes
extensive use of these two colors for driving the development of new functionality.
Because you write a test for code that does not exist yet, your first test run will fail. You
then write code designed to pass the test and rerun the test. You will get a green light if
the behavior of the production code is correct, a red one if your production code still
needs some work. In that way, you are constantly moving through a red/green cycle.
However, once a test passes, you should stop writing new production code until you
have a new test, with new requirements, that fails. You basically write enough application
code to make the test pass, which might not be perfect at first glance, but you have a
tool to verify that any improvement made to the production code does not affect the
expected behavior. If you want to improve or optimize certain aspects of the production
code, you can do it as long as you don’t modify the public interface of your components.
The tests can still be used as backup to make sure the underlying behavior is still the
same.

Code refactoring
The term code refactoring refers to the act of changing the internal implementation of
a component while leaving its observable behavior intact—for example, reducing a large
public method to a set of individually concise and single-purpose methods, which are
easier to maintain. When you are refactoring your production code, you don’t modify
the existing unit tests, which would imply you are adding, removing, or modifying
existing functionality. The existing unit tests are used to make sure the observable be‐
havior of the application code is still the same after the refactoring. If you have, for
example, an action in a controller that returns a list of customers and a unit test for
verifying that behavior, that test will only expect to receive the same list of customers
no matter how the internal implementation is getting that list. If you detect some in‐
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consistencies in that code, you can use refactoring to improve it and use the existing
unit tests to make sure nothing was broken with the introduced changes.

Example 17-3 shows some code that can be improved through internal refactoring.

Example 17-3. Two methods instantiating an HttpClient instance
public abstract class IssueSource : IIssueSource
{
  HttpMessageHandler _handler = null;

  protected IssueSource(HttpMessageHandler handler = null)
  {
    _handler = handler;
  }

  public virtual Task<IEnumerable<Issue>> FindAsync()
  {
    HttpClient client;

    if (_handler != null)
      client = new HttpClient(_handler);
    else
      client = new HttpClient();

    // Do something with the HttpClient instance ...
  }

  public virtual Task<IEnumerable<Issue>> FindAsyncQuery(dynamic values)
  {
    HttpClient client;

    if (_handler != null)
      client = new HttpClient(_handler);
    else
      client = new HttpClient();

    // Do something with the HttpClient instance ...
  }
}

Both methods are initializing a new HttpClient instance. If that code requires some
changes, such as the addition of new settings, it has to be changed in the two methods.
That code can be moved to a common method, which is kept internal to the imple‐
mentation, as shown in Example 17-4.

Example 17-4. HttpClient initialization moved to a common method
public abstract class IssueSource : IIssueSource
{
  HttpMessageHandler _handler = null;
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  protected IssueSource(HttpMessageHandler handler = null)
  {
    _handler = handler;
  }

  public virtual Task<IEnumerable<Issue>> FindAsync()
  {
    HttpClient client = GetClient();

    // Do something with the HttpClient instance ...
  }

  public virtual Task<IEnumerable<Issue>> FindAsyncQuery(dynamic values)
  {
    HttpClient client = GetClient();

    // Do something with the HttpClient instance ...
  }

  protected HttpClient GetClient()
  {
    HttpClient client;

    if (_handler != null)
      client = new HttpClient(_handler);
    else
      client = new HttpClient();

    return client;
  }
}

We’ve removed the duplicated code without modifying the external interface of this
class. The expected behavior is still the same, so the unit tests don’t have to be changed,
and they can be used to verify this change did not break anything.

Dependency injection and mocking
Dependency injection is another practice that usually goes hand in hand with unit test‐
ing in static languages where depedencies cannot be easily replaced at runtime. Since
unit testing focuses on testing the behavior of certain code in isolation, you would want
to minimize the impact of any external dependency during testing. By using dependency
injection, you replace all the hardcoded dependencies and inject them at runtime, so
their behavior can be faked. For example, if a Web API controller relies on a data access
class for querying a database, we will not want to unit test the controller with that explicit
dependency. That would imply a database is initialized and ready to be used every time
the test is run, which might not always be the case. The controller is first decoupled
from the real data access class implementation via an interface or an abstract class, which
is later injected into the controller through either an argument in the constructor or a

442 | Chapter 17: Testability



property setter. As part of the unit test, the only pending task is to create a fake class
that implements the interface or abstract class and also satisfies the requirements of the
test. That fake class could simply mimic the same interface and return the expected data
for the test from a memory list previously initialized in the same test. In that way, we
get rid of the database dependency in the tests. There are multiple open source frame‐
works, such as Moq or RhinoMocks, for automatically generating a fake or mock from
an interface or base class, and setting expectations for how that mock class should be
behave. Example 17-5 shows a fragment of a unit test for our Issue Tracker Web API
that instantiates a mock (from the Moq framework) for emulating the behavior of a data
access class.

Example 17-5. A unit test that uses a mock class
public class IssuesControllerTests
{
  private Mock<IIssueSource> _mockIssueSource = new Mock<IIssueSource>(); // <1>
  private IssuesController _controller;

  public IssuesControllerTests()
  {
    _controller = new IssuesController(_mockIssueSource.Object); // <2>
  }

  [Fact]
  public void ShouldCallFindAsyncWhenGETForAllIssues()
  {
    _controller.Get();
    _mockIssueSource.Verify(i=>i.FindAsync()); // <3>
  }
}

A mock for the IIssueSource interface is instantiated via the Mock class provided by
the Moq framework <1> and injected into the IssuesController constructor <2>. The
unit test invokes the Get method on the controller and verifies that the FindAsync
method on the Mock object was actually called <3>. Verify is a method also provided
by the Moq framework for checking if a method was invoked or not, and how many
times it was invoked (invoking the method FindAsync more than once would imply a
bug in the code, for example). If this framework isn’t used, a lot of manual and repetitive
code would be needed to implement a similar functionality.

Unit Testing an ASP.NET Web API Implementation
There are several components in an ASP.NET Web API implementation that you will
want to test in isolation. As part of this chapter, we will cover some of them, such as
ApiController, MediaTypeFormatter, and HttpMessageHandler. Toward the end of
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the chapter, we will also explore the idea of using the HttpClient class and in-memory
hosting for doing integration testing.

Unit Testing an ApiController
An ApiController in the context of ASP.NET Web API acts as an entry point to your
Web API implementation. It serves as a bridge for exposing application logic to the
external world via HTTP. One of the main things you will want to test is how the con‐
troller reacts to different request messages in isolation. You can pick which messages to
use based on the supported scenarios or use cases for the Web API. Isolation is also a
key aspect for unit testing, as you cannot assume that everything is correctly set up in
the Web API runtime before running the tests. For example, if your ApiController
relies on the authenticated user for doing certain operations, the configuration of that
user should also be done within the unit tests. The same idea applies for the initialization
of the request messages.

As part of this section, we will use the ApiController that we built for managing issues
as the starting point. We will try to write unit tests against that code for covering some
of the supported use cases. Let’s start with Example 17-6.

Example 17-6. Our IssuesController implementation
public class IssuesController : ApiController
{
  private readonly IIssueSource _issueSource;

  public IssuesController(IIssueSource issueSource )
  {
    _issueSource = issueSource;
  }

  public async Task<Issue> Get(string id) // <1>
  {
    var issue = await _issueSource.FindAsync(id);
    if(issue == null)
      throw new HttpResponseException(HttpStatusCode.NotFound);
    return issue;
  }

  public async Task<HttpResponseMessage> Post(Issue issue) // <2>
  {
    var createdIssue = await _issueSource.CreateAsync(issue);
    var link = Url.Link("DefaultApi", new {Controller = "issues",
       id = createdIssue.Id});
    var response = Request.CreateResponse(HttpStatusCode.Created, createdIssue);
    response.Headers.Location = new Uri(link);
    return response;
  }
}
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Example 17-6 shows our first implementation of the IssuesController, which does
not look too complex at first glance. It contains a Get method for retrieving an existing
issue <1>, and a Post method for adding a new issue <2>. It also depends on an IIssue
Source instance for handling persistence concerns.

Testing the Get method

Our first Get method, shown in Example 17-7, looks very simple and returns an existing
issue by delegating the call to the IIssueSource implementation. As the unit tests should
not rely on a concrete IIssueSource implementation, we will use a Mock instead.

Example 17-7. Our first unit test for the Get method
public class IssuesControllerTests
{
  private Mock<IIssueSource> _mockIssueSource = new Mock<IIssueSource>();
  private IssuesController _controller;

  public IssuesControllerTests()
  {
    _controller = new IssuesController(_mockIssueSource.Object); // <1>
  }

  [Fact]
  public void ShouldReturnIssueWhenGETForExistingIssue()
  {
    var issue = new Issue();

    _mockIssueSource.Setup(i => i.FindAsync("1"))
       .Returns(Task.FromResult(issue)); // <2>

    var foundIssue = _controller.Get("1").Result; // <3>

    Assert.Equal(issue, foundIssue); // <4>
  }
}

Example 17-7 mainly checks that the controller invokes the FindAsync method in the
IIssueSource instance to return an existing issue. The controller is first initialized with
a mock instance of IIssueSource <1> as part of the test initialization. That mock in‐
stance is set up to return an issue when it receives an argument equal to “1” <2>, which
is the same argument that gets passed to the Get method controller <3>. Finally, the issue
returned by the controller is compared with the issue injected in the mock to make sure
they are the same <4>.

That’s the happy path when an issue is returned by the IIssueSource implementation,
but we will also want to test how the controller reacts when a requested issue is not
found. We will create a new test for verifying that scenario, as shown in Example 17-8.
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Example 17-8. Unit test for covering the nonexisting issue path
[Fact]
public void ShouldReturnNotFoundWhenGETForNonExistingIssue()
{
  _mockIssueSource.Setup(i => i.FindAsync("1"))
    .Returns(Task.FromResult((Issue)null)); // <1>

  var ex = Assert.Throws<AggregateException>(() =>
  {
    var task = _controller.Get("1");
    var result = task.Result;
  }); // <2>

  Assert.IsType<HttpResponseException>(ex.InnerException); // <3>
  Assert.Equal(HttpStatusCode.NotFound,
    ((HttpResponseException) ex.InnerException).Response.StatusCode); // <4>
}

The controller is throwing an HttpException with a status code equal to 404 when the
issue is not found. The unit test is initializing the Mock for returning a Task with a null
result when the issue ID is equal to 1. As part of the Assert section in the unit test, we
are using the Throws method (provided in xUnit.NET) in the Assert class for checking
whether a method returns an exception or not <2>. The Throws method receives a del‐
egate that might throw an exception, and it tries to capture it. Finally, we are checking
if the thrown exception is of the type HttpResponseException <3> and the status code
on that exception is set to 404 <4>.

Testing the Post method

The Post method in the controller will create a new issue. We need to verify that the
issue is correctly passed to the IIssuesSource implementation, and also that the re‐
sponse headers are correctly set before leaving the controller. Since this controller
method relies on the HttpRequestMessage and UrlHelper instances in the controller
context for generating a response and the link to the new resource, some tedious work
is required to initialize the runtime configuration and the routing table, as shown in
Example 17-9.

Example 17-9. Unit test for covering the nonexistent issue path
_controller.Configuration = new HttpConfiguration(); // <1>

var route = _controller.Configuration.Routes.MapHttpRoute(
  name: "DefaultApi",
  routeTemplate: "api/{controller}/{id}",
  defaults: new { id = RouteParameter.Optional }
); // <2>

var routeData = new HttpRouteData(route,
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  new HttpRouteValueDictionary
  {
    { "controller", "Issues" }
  }
);

_controller.Request = new HttpRequestMessage(HttpMethod.Post,
   "http://test.com/issues");  // <3>
_controller.Request.Properties.Add(HttpPropertyKeys.HttpConfigurationKey,
controller.Configuration);
_controller.Request.Properties.Add(HttpPropertyKeys.HttpRouteDataKey,
   routeData); // <4>

A new HttpConfiguration object is instantiated and set in the controller instance
<1>. The route is set up in <2> and added to the existing configuration object. A new
request object is created and set up with the HTTP verb and URI expected by the test
<3>. Finally, the routing data and configuration object are associated with the request
object through the generic property bag Properties, which is the one used by UrlHelp
er to look up these objects <4>.

The ASP.NET Web API team already simplified this scenario in Web API, as we will see
in the next section. In the meantime, if you are still using the first Web API release, there
is a set of extension methods provided as part of the WebApiContrib project, which
configures the controller with a single line of code (see Example 17-10).

Example 17-10. Extension methods for configuring the ApiController in a test
public static class ApiControllerExtensions
{
  public static void ConfigureForTesting(this ApiController controller,
    HttpRequestMessage request,
    string routeName = null,
    IHttpRoute route = null);

  public static void ConfigureForTesting(this ApiController controller,
    HttpMethod method,
    string uri,
    string routeName = null,
    IHttpRoute route = null);
}

These extension methods receive the request instance or HTTP method to use, and
optionally a URL or default route to use in the test. We will be using these extension
methods in the rest of the chapter for simplifying the code in the tests. Our first unit
test is shown in Example 17-11.

Example 17-11. First test to verify that the CreateAsync method was invoked
[Fact]
public void ShouldCallCreateAsyncWhenPOSTForNewIssue()
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{
  //Arrange
  _controller.ConfigureForTesting(HttpMethod.Post, "http://test.com/issues"); // <1>
  var issue = new Issue();
  _mockIssueSource.Setup(i => i.CreateAsync(issue))
    .Returns(() => Task.FromResult(issue)); // <2>

  //Act
  var response = _controller.Post(issue).Result; // <3>

  //Assert
  _mockIssueSource.Verify(i=>i
    .CreateAsync(It.Is<Issue>(iss => iss.Equals(issue)))); // <4>
}

The HttpRequestMessage and the UrlHelper instances in the IssuesController are
initialized with the extension method ConfigureForTesting instances in the instances
in the <1>. Once the controller is initialized, the IIssueSource mock instance is set to
return an asynchronous task, which emulates the work of persisting the issue in the
backend <2>. The Post method in the controller is invoked with a new issue <3>. The
test verifies that the CreateAsync method in the mock instance was actually invoked <4>.

An additional test is needed to verify that a valid response is returned after we invoke
the CreateAsync method in the IIssueSource implementation Example 17-12.

Example 17-12. Second test to verify the response message
[Fact]
public void ShouldSetResponseHeadersWhenPOSTForNewIssue()
{
  //Arrange
  _controller.ConfigureForTesting(HttpMethod.Post, "http://test.com/issues");
  var createdIssue = new Issue();
  createdIssue.Id = "1";
  _mockIssueSource.Setup(i => i.CreateAsync(createdIssue)).Returns(() =>
  Task.FromResult(createdIssue)); // <1>

  //Act
  var response = _controller.Post(createdIssue).Result; // <2>

  //Assert
  response.StatusCode.ShouldEqual(HttpStatusCode.Created); // <3>
  response.Headers.Location.AbsoluteUri.ShouldEqual("http://test.com/issues/1");
}

The IIssueSource mock instance is set up to return a task with the created issue <1>.
The created issue is passed as an argument to the controller instance <2>. The test verifies
that the expected HTTP status code is equal to Created and the new resource location
is http://test.com/issues/1. At this point, you should have a pretty good idea of what is
involved in unit testing a controller in ASP.NET Web API. In the next sections, we will
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discuss what needs to be done for testing a MediaTypeFormatter and an HttpMessage
Handler <3>.

IHttpActionResult in Web API 2

Web API 2 introduces a new interface IHttpActionResult (equivalent to ActionRe
sult in ASP.NET MVC) that greatly simplifies the unit testing story for controllers. A
controller method can now return an implementation of IHttpActionResult, which
internally uses the Request or the UrlHelper for link generation, so the unit test cares
only about the returned IHttpActionResult instance. The following code shows the
equivalent version of the Post method using an instance of IHttpActionResult:

public async Task<IHttpActionResult> Post(Issue issue)
{
  var createdIssue = await _issueSource.CreateAsync(issue);
  var result = new CreatedAtRouteNegotiatedContentResult<Issue>(
    "DefaultApi",
    new Dictionary<string, object> { { "id", createdIssue.Id } },
      createdIssue,
      this);

  return result;
}

CreatedAtRouteNegotiatedContentResult is an implementation also included in the
framework for handling this scenario. A new resource is created and the location is set
in the response message. The unit test is much simpler too, as illustrated in
Example 17-13.

Example 17-13. Second test to verify the response message
[Fact]
public void ShouldSetResponseHeadersWhenPOSTForNewIssue()
{
  //Arrange
  var createdIssue = new Issue();
  createdIssue.Id = "1";
  _mockIssueSource.Setup(i => i.CreateAsync(createdIssue)).Returns(() =>
  Task.FromResult(createdIssue));

  //Act
  var result = _controller.Post(createdIssue).Result as
  CreatedAtRouteNegotiatedContentResult; // <1>

  //Assert
  result.ShouldNotBeNull(); // <2>
  result.Content.ShouldBeType<Issue>(); // <3>
}
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The unit test just casts the returned result to the expected type, which is CreateAtRou
teNegotiatedContentResult in this test <1>, and verifies that the result is not null <2>
and the content set in that result is an instance of the Issue type <3>. No previous
initialization code was required, as all the content negotiation and link management
logic is now encapsulated in the IHttpActionResult implementation, which is a con‐
cern this unit test does not care about.

Unit Testing a MediaTypeFormatter
As a central piece for handling new media types or content negotiation, a MediaType
Formatter implementation involves several aspects you’ll want to address during unit
testing. Those aspects include correct handling of the supported media types, converting
a model from or to a given media type, or optionally checking the correct configuration
of some settings such as encoding or mappings.

We can get a rough idea of what unit testing a MediaTypeFormatter implementation
involves by looking at its class definition in Example 17-14.

Example 17-14. MediaTypeFormatter class definition
public abstract class MediaTypeFormatter
{
  public Collection<Encoding> SupportedEncodings { get; }

  public Collection<MediaTypeHeaderValue> SupportedMediaTypes { get; }

  public Collection<MediaTypeMapping> MediaTypeMappings { get; }

  public abstract bool CanReadType(Type type);

  public abstract bool CanWriteType(Type type);

  public virtual Task<object> ReadFromStreamAsync(Type type, Stream readStream,
    HttpContent content, IFormatterLogger formatterLogger);

  public virtual Task WriteToStreamAsync(Type type, object value,
    Stream writeStream, HttpContent content, TransportContext transportContext);
}

The following conditions can be checked with different unit tests:

• The supported media types (see Example 17-15) were correctly configured in the
SupportedMediaTypes collection. In the example we built in Chapter 13 for sup‐
porting syndication media types such as Atom or RSS, this test would imply that
the collection contains application/atom+xml and application/rss+xml for sup‐
porting those media types, respectively.
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Example 17-15. Unit tests for checking the supported media types
[Fact]
public void ShouldSupportAtom()
{
  var formatter = new SyndicationMediaTypeFormatter();

  Assert.True(formatter.SupportedMediaTypes
    .Any(s => s.MediaType == "application/atom+xml"));
}

[Fact]
public void ShouldSupportRss()
{
  var formatter = new SyndicationMediaTypeFormatter();

  Assert.True(formatter.SupportedMediaTypes
    .Any(s => s.MediaType == "application/rss+xml"));
}

• The implementation supports serializing or deserialization of a given model type
in the CanReadType and CanWriteType methods (see Example 17-16).

Example 17-16. Unit tests for checking whether an implementation can read or write a
type
[Fact]
public void ShouldNotReadAnyType()
{
  var formatter = new SyndicationMediaTypeFormatter();

  var canRead = formatter.CanReadType(typeof(object));

  Assert.False(canRead);
}

[Fact]
public void ShouldWriteAnyType()
{
  var formatter = new SyndicationMediaTypeFormatter();

  var canWrite = formatter.CanWriteType(typeof(object));

  Assert.True(canWrite);
}

• The code for writing or reading a model into/out to stream using one of the sup‐
ported media types is working correctly (see Example 17-17). That implies testing
the WriteToStreamAsync and ReadFromStreamAsync methods, respectively.
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Example 17-17. Unit tests for verifying the behavior of the WriteToStreamAsync meth‐
od
[Fact]
public void ShouldSerializeAsAtom()
{
  var ms = new MemoryStream();

  var content = new FakeContent();
  content.Headers.ContentType = new MediaTypeHeaderValue("application/atom+xml");

  var formatter = new SyndicationMediaTypeFormatter();

  var task = formatter.WriteToStreamAsync(typeof(List<ItemToSerialize>),
    new List<ItemToSerialize> { new ItemToSerialize { ItemName = "Test" }},
    ms,
    content,
    new FakeTransport()
  );

  task.Wait();

  ms.Seek(0, SeekOrigin.Begin);

  var atomFormatter = new Atom10FeedFormatter();
  atomFormatter.ReadFrom(XmlReader.Create(ms));

  Assert.Equal(1, atomFormatter.Feed.Items.Count());
}

public class ItemToSerialize
{
  public string ItemName { get; set; }
}

public class FakeContent : HttpContent
{
  public FakeContent()
    : base()
  {
  }

  protected override Task SerializeToStreamAsync(Stream stream, TransportContext
     context)
  {
    throw new NotImplementedException();
  }

  protected override bool TryComputeLength(out long length)
  {
    throw new NotImplementedException();
  }
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}

public class FakeTransport : TransportContext
{
  public override ChannelBinding GetChannelBinding(ChannelBindingKind kind)
  {
    throw new NotImplementedException();
  }
}

Example 17-17 shows a unit test that serializes a list of items of the type ItemToSerial
ize, also defined in the test as an Atom feed. The test mainly verifies that the Syndica
tionMediaTypeFormatter can serialize the list of items when the content type is equal
to application/atom+xml. As the WriteToStreamAsync method expects instances of
HttpContent and TransportContext, and those are not used at all in the implementa‐
tion with the exception of the headers, two fake classes were defined that don’t do any‐
thing special. The test also deserializes the stream back to an Atom feed using the WCF
syndication class to make sure the serialization was done properly.

• All the required settings are correctly initialized. For example, if you have a re‐
quirement for supporting the media type mappings in the query string, a unit test
could check that this mapping was correctly configured in the MediaTypeMap
pings collection, as Example 17-18 demonstrates.

Example 17-18. Unit test for checking the supported media type mappings
[Fact]
public void ShouldMapAtomFormatInQueryString()
{
  var formatter = new SyndicationMediaTypeFormatter();

  Assert.True(formatter.MediaTypeMappings.OfType<QueryStringMapping>()
    .Any(m => m.QueryStringParameterName == "format" &&
              m.QueryStringParameterValue == "atom" &&
              m.MediaType.MediaType == "application/atom+xml"));
}

Example 17-18 illustrates a sample of a test that checks if a MediaTypeMapping was
defined as a query string argument for mapping a query string variable format with
value atom to the media type application/atom+xml.

Unit Testing an HttpMessageHandler
An HttpMessageHandler is a generic interception mechanism for the Web API runtime
pipeline. It’s asynchronous by nature, and typically contains a single method,
SendAsync, for processing a request message (HttpRequestMessage) that returns a Task
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instance representing some work to obtain a response (HttpResponseMessage). See
Example 17-19.

Example 17-19. HttpMessageHandler class definition
public abstract class HttpMessageHandler
{
  protected internal abstract Task<HttpResponseMessage> SendAsync(
    HttpRequestMessage request, CancellationToken cancellationToken);
}

The SendAsync method cannot be directly called in a unit test, as it is not public, but
the framework provides a class, System.Net.Http.MessageInvoker, that you can use
for that purpose. This class receives the HttpMessageHandler instance in the construc‐
tor and provides a public method, SendAsync, for invoking the method with the same
name on the handler. Example 17-20 simply illustrates how the SendAsync method in
a sample HttpMessageHandler is unit tested. However, an HttpMessageHandler might
receive external dependencies or contain some other public methods you will want to
test as well.

Example 17-20. Unit testing an HttpMessageHandler
[Fact]
public void ShouldInvokeHandler()
{
    var handler = new SampleHttpMessageHandler();

    var invoker = new HttpMessageInvoker(handler);
    var task = invoker.SendAsync(new HttpRequestMessage(), new CancellationToken());

    task.Wait();

    var response = task.Result;

    // Assertions over the response
    // ......
}

Unit Testing an ActionFilterAttribute
Action filters are not any different from the HTTP message handlers when it comes to
message interception, but they run much deeper in the runtime pipeline once the action
context has been initialized and the action is about to execute. The action filter base
class System.Web.Http.Filters.ActionFilterAttribute (see Example 17-21) pro‐
vides two methods that can be overridden, OnActionExecuting and OnActionExecu
ted, for intercepting the call before and right after the action has been executed.
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Example 17-21. ActionFilterAttribute class definition
public abstract class ActionFilterAttribute : FilterAttribute,
  IActionFilter,
  IFilter
{
  public virtual void OnActionExecuted(HttpActionExecutedContext
    actionExecutedContext);

  public virtual void OnActionExecuting(HttpActionContext
    actionContext);
}

Both methods are public, so they can be called directly from a unit test. Example 17-22
shows a very basic implementation of a filter for authenticating clients with an appli‐
cation key. The idea is to use this concrete implementation to show how the different
scenarios can be unit tested.

Example 17-22. Action filter for authenticating clients with an application key
public interface IKeyVerifier
{
  bool VerifyKey(string key);
}

public class ApplicationKeyActionFilter : ActionFilterAttribute
{
  public const string KeyHeaderName = "X-AuthKey";

  IKeyVerifier keyVerifier;

  public ApplicationKeyActionFilter()
  {
  }

  public ApplicationKeyActionFilter(IKeyVerifier keyVerifier) // <1>
  {
      this.keyVerifier = keyVerifier;
  }

  public Type KeyVerifierType // <2>
  {
      get;
      set;
  }

  public override void OnActionExecuting(HttpActionContext
    actionContext)
  {
      if (this.keyVerifier == null)
      {
          if (this.KeyVerifierType == null)
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          {
              throw new Exception("The keyVerifierType was not provided");
          }

          this.keyVerifier = (IKeyVerifier)Activator
            .CreateInstance(this.KeyVerifierType);
      }

      IEnumerable<string> values = null;

      if (actionContext.Request.Headers
        .TryGetValues(KeyHeaderName, out values)) // <3>
      {
          var key = values.First();

          if (!this.keyVerifier.VerifyKey(key)) // <4>
          {
              actionContext.Response =
                new HttpResponseMessage(HttpStatusCode.Unauthorized);
          }
      }
      else
      {
          actionContext.Response =
            new HttpResponseMessage(HttpStatusCode.Unauthorized);
      }

      base.OnActionExecuting(actionContext);
  }
}

This action filter receives an instance of IKeyVerifier, which is used to verify whether
a key is valid <1>. Because an action filter can also be used as an attribute, the imple‐
mentation provides a property, KeyVerifierType <2>, to set the IKeyVerifier in that
scenario. This filter only implements the OnActionExecuting method, which runs be‐
fore the action is executed. This implementation checks for an X-Auth header in the
request message set in the context <3>, and tries to pass the value of that header to the
IKeyVerifier instance for authentication <4>. If the key cannot be validated or it is not
found in the request message, the filter sets a response message with an HTTP status
code of 401 Unauthorized in the current context, and the pipeline execution is inter‐
rupted.

The first unit test, shown in Example 17-23, will test the scenario in which a valid key
is passed in the request message.

Example 17-23. Unit test for a valid key
[Fact]
public class ApplicationKeyActionFilterFixture
{
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  public void ShouldValidateKey()
  {
      var keyVerifier = new Mock<IKeyVerifier>();
      keyVerifier
          .Setup(k => k.VerifyKey("mykey"))
          .Returns(true); // <1>

      var request = new HttpRequestMessage();
      request.Headers.Add("X-AuthKey", "mykey"); // <2>

      var actionContext = InitializeActionContext(request); // <3>

      var filter = new ApplicationKeyActionFilter(keyVerifier.Object);
      filter.OnActionExecuting(actionContext); // <4>

      Assert.Null(actionContext.Response); // <5>
  }
}

private HttpActionContext InitializeActionContext(HttpRequestMessage request)
{
    var configuration = new HttpConfiguration();

    var route = configuration.Routes.MapHttpRoute(
      name: "DefaultApi",
      routeTemplate: "api/{controller}/{id}",
      defaults: new { id = RouteParameter.Optional }
    );

    var routeData = new HttpRouteData(route,
        new HttpRouteValueDictionary
        {
            { "controller", "Issues" }
        }
    );

    request.Properties[HttpPropertyKeys.HttpRouteDataKey] = routeData;

    var controllerContext = new HttpControllerContext(configuration, routeData, request);

    var actionContext = new HttpActionContext
    {
        ControllerContext = controllerContext
    };

    return actionContext;
}

As a first step <1>, the unit test initializes a mock or fake instance of the IKeyVerifi
er that will return true when the key passed to the VerifyKey method is equal to
mykey. Secondly <2>, a new HTTP request message is created and the custom header
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X-AuthKey is set to the value expected by the IKeyVerifier instance. The Action context
expected by the filter is initialized in the method InitializeActionContext <3>, which
requires a lot of common boilerplate code to inject the routing configuration and the
request message into the constructor of the HttpControllerContext class. Finally, the
method OnActionExecuting is invoked <4> with the initialized context and an assertion
is made for a null response <5>. If nothing fails in the action filter implementation, the
response will never be set in the context, so the test will pass.

Example 17-24 will test the next scenario, in which a key is not valid and a response is
returned with the status code 401 (Unauthorized).

Example 17-24. Unit test for an invalid key
[Fact]
public void ShouldNotValidateKey()
{
    var keyVerifier = new Mock<IKeyVerifier>();
    keyVerifier
        .Setup(k => k.VerifyKey("mykey"))
        .Returns(true);

    var request = new HttpRequestMessage();
    request.Headers.Add(ApplicationKeyActionFilter.KeyHeaderName, "badkey"); // <1>

    var actionContext = InitializeActionContext(request);

    var filter = new ApplicationKeyActionFilter(keyVerifier.Object);
    filter.OnActionExecuting(actionContext);

    Assert.NotNull(actionContext.Response); // <2>
    Assert.Equal(HttpStatusCode.Unauthorized,
       actionContext.Response.StatusCode); // <3>
}

The main difference with the previous test is that the application set in the request
message <1> is different from the one expected by the IKeyVerifier mock instance.
After the OnActionExecuting method is invoked, two assertions are made to make sure
the response set in the context is not null <2> and its status code is equal to 401 (Un
authorized) <3>.

Unit Testing Routes
Route configuration is another aspect that you might want to cover with unit testing.
Although it’s not a component itself, a complex route configuration that does not follow
the common conventions might lead to some problems that you will want to figure out
sooner rather than later, and far before the implementation is deployed. The bad news
is that ASP.NET Web API does not offer any support for unit testing routes out-of-the-
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box, so custom code is required. That custom code will basically use some of the built-
in Web API infrastructure components, like the DefaultHttpControllerSelector and
ApiControllerActionSelector, to infer the controller type and action name for a given
HttpRequestMessage and routing configuration. See Example 17-25.

Example 17-25. A generic method for testing routes
public static class RouteTester
{
  public static void TestRoutes(HttpConfiguration configuration,
    HttpRequestMessage request,
    Action<Type, string> callback)
  {
    var routeData = configuration.Routes.GetRouteData(request);
    request.Properties[HttpPropertyKeys.HttpRouteDataKey] = routeData;

    var controllerSelector = new DefaultHttpControllerSelector(configuration); // <1>
    var controllerContext = new HttpControllerContext(configuration, routeData,
       request);

    controllerContext.ControllerDescriptor = controllerSelector
      .SelectController(request); // <2>

    var actionSelector = new ApiControllerActionSelector(); // <3>

    var action = actionSelector.SelectAction(controllerContext).ActionName; // <4>
    var controllerType = controllerContext.ControllerDescriptor
       .ControllerType; // <5>

    callback(controllerType, action); // <5>
  }
}

Example 17-25 illustrates a generic method that receives an instance of HttpConfigu
ration with the routing configuration and an HttpRequestMessage, and invokes a
callback with the selected controller type and action name. This method first instantiates
a DefaultHttpControllerSelector class using the HttpConfiguration received as an
argument to determine the controller type <2>. The controller is selected afterward with
the HttpRequestMessage also passed as an argument <3>. Once the controller is selected,
an ApiControllerActionSelector is instantiated next to infer the action name <4>.
The action name and controller type are obtained in <5> and <6>. Finally, a callback is
called with the inferred controller type and action name. This callback will be used by
the unit test to perform the assertions. See Example 17-26.

Example 17-26. A unit test that uses the RouteTester implementation
[Fact]
public void ShouldRouteToIssueGET()
{
  var config = new HttpConfiguration();
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  config.Routes.MapHttpRoute(name: "Default",
    routeTemplate: "api/{controller}/{id}"); // <1>

  var request = new HttpRequestMessage(HttpMethod.Get,
  "http://www.example.com/api/Issues/1"); // <2>

  RouteTester.TestRoutes(config, request, // <3>
    (controllerType, action) =>
    {
      Assert.Equal(typeof(IssuesController), controllerType);
      Assert.Equal("Get", action);
    });
}

Example 17-26 illustrates how the RouteTester class can be used in a unit test to verify
a route configuration. An HttpConfiguration is initialized and configured with the
routes to test <1>, and also an HttpRequestMessage with the HTTP verb and URL to
invoke <2>. As the final step, the RouteTester is used with the configuration and request
instances to determine the controller type and action name. As part of the callback, the
test defines the assertions for comparing the inferred controller type and action name
with the expected ones <3>.

Integration Tests in ASP.NET Web API
Thus far we have discussed unit testing, which focuses on testing components in isola‐
tion, but what happens if you would like to test how all your components collaborate
in a given scenario? This is where you will find integration testing very useful. In the
case of a Web API, integration testing focuses more on testing a complete call end to
end from the client to the service, including all the components in the stack such as
controllers, filters, message handlers, or any other component configured in your Web
API runtime. For example, you might want to use an integration test to enable basic
authentication with an HttpMessageHandler and verify how that handler behaves with
your existing controllers from the point of a view of a client application. Ideally, you will
also unit test those components to make sure they behave correctly in isolation.

For doing integration testing in ASP.NET Web API, we will use HttpClient, which can
handle requests in an in-memory hosted server. This has some evident advantages for
simplifying the tests, as there is no need to open ports or send messages across the
network. As shown in Example 17-27, the HttpClient class contains several construc‐
tors that receive an HttpMessageHandler instance. As covered in Chapter 4, the
HttpServer class is an HttpMessageHandler implementation, which means it can be
directly injected in an HttpClient instance to automatically handle any message sent
by the client in a test.
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Example 17-27. HttpClient constructors
public class HttpClient : HttpMessageInvoker
{
   public HttpClient();
   public HttpClient(HttpMessageHandler handler);
   public HttpClient(HttpMessageHandler handler, bool disposeHandler);
}

We can configure an HttpServer instance with the HttpMessageHandler from our pre‐
vious implementation and use it with an HttpClient instance within an integration test
to verify how the scenario works end to end. See Example 17-28.

Example 17-28. Integration tests for basic authentication
public class BasicAuthenticationIntegrationTests
{
  [Fact]
  public ShouldReturn404IfCredentialsNotSpecified()
  {
      var config = new HttpConfiguration();
      config.Routes.MapHttpRoute(name: "Default",
        routeTemplate: "api/{controller}/{action}/{id}",
        defaults: new { id = RouteParameter.Optional }); // <1>

      config.MessageHandlers.Add(new BasicAuthHttpMessageHandler()); // <2>

      var server = new HttpServer(config);

      var client = new HttpClient(server); // <3>

      var task = client.GetAsync("http://test.com/issues"); // <4>
      task.Wait();

      var response = task.Result;

      Assert.AreEqual(HttpStatusCode.Unauthorized, response.StatusCode); // <5>
  }
}

As shown in Example 17-28, we can still use a unit testing framework for automating
the integration tests. Our test is configuring a server in-memory with a default route
<1> and a BasicAuthHttpMessageHandler <2>, which internally implements basic au‐
thentication. That server is injected in the HttpClient <3>, so the call to http://test.com/
issues with GetAsync will be routed to that server <4>. In the case of this test, no au‐
thorization header was set in the HttpClient, so the expected behavior is that the
BasicAuthHttpHandler returns a response message with status code 404 (Unauthor
ized) <5>. Authentication is just a scenario where integration testing makes sense, but
as you can imagine, this idea can be extended to any scenario that requires coordination
between multiple components.
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Conclusion
TDD can be used as a very effective tool to drive the design and implementation of your
Web API. As a side effect, you will get unit tests reflecting the expected behavior of the
implementation that you can also use to make progressive enhancements in the existing
code. Those tests can be used to make sure that nothing broke with the introduction of
new changes and that the implementation still satisfies the expected behavior. There are
two commonly used practices with TDD: dependency injection and code refactoring.
While the former focuses on generating more testable code by removing explicit de‐
pendencies, the latter is used to improve the quality of the existing code. In addition to
unit testing, which focuses on testing specific pieces of code in isolation, you can also
use integration testing for testing a scenario end to end, and see how the different com‐
ponents in the implementation interact.
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APPENDIX A

Media Types

Table A-1. Media types
Media type Description Reference

text/html Used for exchanging HTML documents. http://www.iana.org/assignments/media-
types/text/html

application/xhtml+xml Used for exchanging HTML documents that
use well-formed XML.

http://tools.ietf.org/html/rfc3236

application/xml Used for exchanging XML documents and
schemas.

http://www.rfc-editor.org/rfc/rfc3023.txt

application/json Used for exchanging JSON documents. http://www.ietf.org/rfc/rfc4627.txt

application/x-www-

form-urlencoded

Used for exchanging form key/value data. http://www.w3.org/TR/html401/interact/
forms.html#h-17.13.4.1

multipart/mixed Used for exchanging multiple sets of data
combined into a single body.

http://tools.ietf.org/html/rfc1521#section-7.2.2

multipart/form-data Used primarily for exchanging files. http://tools.ietf.org/html/rfc2388

image/jpeg Used for exchanging JPEG documents. http://tools.ietf.org/html/rfc2046

image/gif Used for exchanging GIF documents. http://tools.ietf.org/html/rfc2046

image/png Used for exchanging PNG documents. http://tools.ietf.org/html/rfc2083

image/svg+xml Used for exchanging SVG (http://
www.w3.org/TR/SVG11/) documents.

http://www.w3.org/TR/SVG/mimereg.html

application/atom+xml Used for exchanging Atom feeds. http://tools.ietf.org/html/rfc4287

application/vnd.hal

+json

Used for exchanging data that contains
links to related resourcess

http://stateless.co/hal_specification.html

application/

vnd.collection+json

Used for managing collections of data. http://amundsen.com/media-types/collection/
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APPENDIX B

HTTP Headers

Table B-1. Message headers
Header Description Reference

Cache-

Control

Gives instructions to caching mechanisms that the request/
response passes through related to its cachability.

http://tools.ietf.org/html/draft-ietf-httpbis-
p6-cache-21#section-7.2

Connection Gives options that are specific to the current connection and
should not be passed on to proxies.

http://tools.ietf.org/html/draft-ietf-httpbis-
p1-messaging-21#section-6.1

Date Specifies the date and time the message originated. http://tools.ietf.org/html/draft-ietf-httpbis-
p2-semantics-21#section-8.1.1.2

Pragma Specifies to caches that they should always revalidate a
response they have cached. It exists for backward
compatibility with HTTP 1.0 clients and is deprecated in
HTTP 1.1 by the Cache-Control header.

http://tools.ietf.org/html/draft-ietf-httpbis-
p6-cache-21#section-7.4

Transfer-

Encoding

Indicates if the message body has had any transformation
applied to it in order to transfer it between the sender and
the recepient.

http://tools.ietf.org/html/draft-ietf-httpbis-
p1-messaging-21#section-3.3.1

Upgrade Allows the client to specify that it would like to use
additional protocols if the server is willing to switch.

http://tools.ietf.org/html/draft-ietf-httpbis-
p1-messaging-21#section-6.3

Via Used by gateways and proxies, it contains the intermediate
protocols and recepients between the client and the server
on requests, and the server and client on responses. This
header is very useful in a response from a TRACE request.

http://tools.ietf.org/html/draft-ietf-httpbis-
p1-messaging-21#section-5.7

Warning Used to carry additional information about the message
that may not be reflected in the mesage itself.

http://tools.ietf.org/html/draft-ietf-httpbis-
p1-messaging-21#section-5.7
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Table B-2. Request headers
Header Description Reference

Host Provides the host and port information in the target
URI.

http://tools.ietf.org/html/draft-ietf-httpbis-
p1-messaging-21#section-5.4

Max-Forwards For use with debugging with TRACE and OPTION
methods, this header allows the client to limit the
number of times that the request can be forwarded by
proxies.

http://tools.ietf.org/html/draft-ietf-httpbis-
p2-semantics-21#section-6.1.1

Expect Tells the server expected behavior from the client. For
example, Expect: 100-Continue tells the
server the client expects it to process the request before
it starts sending the body.

http://tools.ietf.org/html/draft-ietf-httpbis-
p2-semantics-21#section-6.1.2

Range Specifies that the server should perform a byte-
range operation and return only the requested bytes.

http://tools.ietf.org/html/draft-ietf-httpbis-
p5-range-21#section-5.4

If-Match Used to make a conditional request that should be
performed only if the value of the entity tag matches
one or more representations of the resource

http://tools.ietf.org/html/draft-ietf-httpbis-
p4-conditional-21#section-3.1

If-None-Match Used to make a conditional request that should be
performed only if the value of the entity tag does not
match one or more representations of the resource.

http://tools.ietf.org/html/draft-ietf-httpbis-
p4-conditional-21#section-3.2

If-Modified-

Since

Used to make a conditional request that should be
performed only if the resource has been modified since
the specified date.

http://tools.ietf.org/html/draft-ietf-httpbis-
p4-conditional-21#section-3.3

If-Unmodified-

Since

Used to make a conditional request that should be
performed only if the resource has not been modified
since the specified date.

http://tools.ietf.org/html/draft-ietf-httpbis-
p4-conditional-21#section-3.4

If-Range Used to make a conditional request that allows a client
to get a partial representation returned as long as the
entity tag matches.

http://tools.ietf.org/html/draft-ietf-httpbis-
p4-conditional-21#section-3.5

Accept Contains a prioritized list of acceptable response media
types for the response.

http://tools.ietf.org/html/draft-ietf-httpbis-
p2-semantics-21#section-6.3.2

Accept-Charset Contains a prioritized list of acceptable character
encodings for the response.

http://tools.ietf.org/html/draft-ietf-httpbis-
p2-semantics-21#section-6.3.3

Accept-

Encoding

Contains a prioritized list of acceptable transfer
codings.

http://tools.ietf.org/html/draft-ietf-httpbis-
p2-semantics-21#section-6.3.4

Accept-

Language

Contains a prioritized list of languages. http://tools.ietf.org/html/draft-ietf-httpbis-
p2-semantics-21#section-6.3.5

From Specifies the email for the human who is making the
request.

http://tools.ietf.org/html/draft-ietf-httpbis-
p2-semantics-21#section-6.5.1

Referer Specifies the URI for the resource that provided the
target URI for the current request.

http://tools.ietf.org/html/draft-ietf-httpbis-
p2-semantics-21#section-6.5.2

TE Indicates acceptable transfer codings, besides
“chunked.”

http://tools.ietf.org/html/draft-ietf-httpbis-
p1-messaging-21#section-4.3
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Header Description Reference

User-Agent Specifies information about the client generating the
request.

http://tools.ietf.org/html/draft-ietf-httpbis-
p2-semantics-21#section-6.5.3

Authorization Contains credentials for the realm being accessed. http://tools.ietf.org/html/draft-ietf-httpbis-
p7-auth-21#section-4.1

Table B-3. Response headers
Header Description Reference

Age Specifies how much time has elapsed since the response
was generated.

http://tools.ietf.org/html/draft-ietf-httpbis-p6-
cache-21#section-7.1

Date Specifies the date and time when the message was
generated.

http://tools.ietf.org/html/draft-ietf-httpbis-p2-
semantics-21#section-8.1.1.2

Location Specifies a resource that is associated with the response
(either a resource that was created or one that the client
should redirect to).

http://tools.ietf.org/html/draft-ietf-httpbis-p2-
semantics-21#section-8.1.1.2

Retry-After Indicates how long the client should wait before
retrying a request to the resource. In the case of a
redirect, it relates to the redirect URI.

http://tools.ietf.org/html/draft-ietf-httpbis-p2-
semantics-21#section-8.1.1.3

Last-

Modified

Specifies the date and time at which the origin server
believes the representation was modified.

http://tools.ietf.org/html/draft-ietf-httpbis-p4-
conditional-21#section-2.2

ETag Specifies an identifier that is unique to the currently
selected representation.

http://tools.ietf.org/html/draft-ietf-httpbis-p4-
conditional-21#section-2.3

Vary Indicates which header fields were used as part of
selecting the representation returned to the client.

http://tools.ietf.org/html/draft-ietf-httpbis-p2-
semantics-21#section-8.2.1

WWW-

Authenti

cate

Indicates one or more authentication challenges
informing the client how they must authenticate to the
target resource.

http://tools.ietf.org/html/draft-ietf-httpbis-p7-
auth-21#section-4.4

Proxy-

Authenti

cate

Specifies one or more authentication challenges
informing the client how they must authenticate to the
proxy for the target resource.

http://tools.ietf.org/html/draft-ietf-httpbis-p7-
auth-21#section-4.2

Accept-

Ranges

Specifies the acceptable ranges clients may use with a
range request.

http://tools.ietf.org/html/draft-ietf-httpbis-p5-
range-21#section-5.1

Allow Specifies which HTTP methods are acceptable to the
target resource.

http://tools.ietf.org/html/draft-ietf-httpbis-p2-
semantics-21#section-8.4.1

Server Contains information about the server environment for
the origin server.

http://tools.ietf.org/html/draft-ietf-httpbis-p2-
semantics-21#section-8.4.2
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Table B-4. Representation headers
Header Description Reference

Content-Type Specifies the media type of the representation. http://tools.ietf.org/html/draft-ietf-httpbis-p2-
semantics-21#section-3.1.1.5

Content-

Encoding

Specifies the content codings that have been
applied to the representation.

http://tools.ietf.org/html/draft-ietf-httpbis-p2-
semantics-21#section-3.1.2.2

Content-

Language

Indicates the language for the intended
audience of the current representation.

http://tools.ietf.org/html/draft-ietf-httpbis-p2-
semantics-21#section-3.1.1.5

Content-

Location

Specifies a URI for specifically retrieving the
current representation.

http://tools.ietf.org/html/draft-ietf-httpbis-p2-
semantics-21#section-3.1.4.2

Expires Gives the date and time for when the response
is considered stale.

http://tools.ietf.org/html/draft-ietf-httpbis-p6-
cache-21#section-7.3
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APPENDIX C

Content Negotiation

There are two types of content negotiation (conneg): proactive and reactive.

Proactive Negotiation
This type of negotiation occurs when the server is responsible for selection and contains
logic that executes per request in order to find the best representation. It makes the
selection based on matching up against client preferences or additional headers and the
server’s available representations. The client expresses its preference through the pre‐
viously mentioned Accept* headers (see Table B-2). Each of these headers allows for
sending multiple values or ranges along with a qualifier (also known as a q-value) that
contains prioritization. The server can use additional fields, though, like User-Agent
or any other.

If the server determines that the client hasn’t sent it enough information to make a
selection it can make a default selection, return a status 406 Not Acceptable, or perform
reactive negotiation (see next section). Once it makes the selection the server should
return to the client the chosen representation. The response should include a Vary
header, which indicates exactly which header fields were used to make the selection.
The server can also include a Content-Location header containing the URI of the
negotiated content. It is important to remember that the server is not bound by the client
preferences, but it should try to adhere to them as much as it can.

Figure C-1 indicates the steps of the process.
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Figure C-1. Proactive conneg

Notice in the figure that in cases where the client has not sent client preferences, or a
suitable match cannot be found, the server at its discretion can either return a default
representation or return a 406 Not Acceptable response.

Web browsers conventionally use this type of negotiation. Whenever you make a request
to a server, your browser sends a list of preferences of things that it supports. In some
cases, it may send additional media types that are supported via browser plug-ins. The
following is a request using Chrome; notice the various Accept headers that the browser
is sending. Different browsers will also have different preferences.

GET http://www.yahoo.com/ HTTP/1.1
Host: www.yahoo.com
Connection: keep-alive
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

Reactive Negotiation
With this type of negotiation (also referred to as agent-driven negotiation), the choice
of selection is moved to the client. The way it works is that when the client sends a
request to the server for a resource, the server returns a list of representations with a
status code of 300 Multiple Choices. The client then chooses from the list based on
its own logic and then sends a second request to get the selected representation.

This flow is depicted in Figure C-2.
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Figure C-2. Reactive conneg

As to the representation itself, which contains the choices, the spec is not at all pre‐
scriptive. Mike Amundsen has a nice article on this type of negotiation called “Agent-
Driven conneg in HTTP.”

In his post he recommends several different fully supported approaches. One approach
is to return an XHTML representation using <a hrefs> for each option, as in the fol‐
lowing example:

HTTP/1.1 300 Multiple Choices
Host: www.example.org
Content-Type: application/xhtml
Content-Length:XXX

<p>
  Select one:
</p>
<a href="/results/fr" hreflang="fr">French</a>
<a href="/results/en-US" hreflang="en-US">US English</a>
<a href="/results/de" hreflang="de">German</a>

An alternative approach is to use Link headers. This has the advantage of being a stan‐
dard header that any client can understand. Here is an example:

HTTP/1.1 300 Multiple Choices
Host: www.example.org
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Content-Length: 0
Link: <http://www.example.org/results/png>; type="image/png",
      <http://www.example.org/results/jpeg>;type="image/jpeg",
      <http://www.example.org/results/gif>;type="image/gif"

The benefit of using an established mechanism is that any HTTP client can be expected
to understand it. You could return application/json and just embed the links in JSON,
but unless your client has that knowledge out-of-band, it won’t know how to parse it.
Using the profile header helps because the client can be pointed to a spec that defines
the link format (without your having to introduce a new media type). In this example,
the profile document would specify to use an alternate JSON array for the list:

HTTP/1.1 300 Multiple Choices
Host: www.example.org
Content-Type: application/json
Content-Length: XXX
Link: <http://www.example.org/profile>; rel="profile"

{
  "alternates" : [
    {"href": "http://www.example.org/results/png", "type":"image/png"},
    {"href": "http://www.example.org/results/jpeg", "type": "image/jpeg"},
    {"href", "http://www.example.org/results/gif", "type": "image/gif"}
  ]
}
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APPENDIX D

Caching in Action

As we’ve seen, there are quite a few moving parts involved with HTTP caching. To
illustrate how everything works together, let’s take a look at a common scenario involv‐
ing two clients, an HTTP cache and the origin server. For the sake of brevity the body
and all headers are not shown in the responses.

First, Client A does an initial request, as shown in Figure D-1.

Figure D-1. Client A does an initial GET
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1. The cache receives the request, and seeing that it is a GET request checks whether it
has a cached response. It doesn’t, so the cache forwards it on to the origin server.

2. The origin server generates a response, including ETag and max-age headers.
3. The cache receives the response and caches the result using a hash of the request

URI and the Accept header value.
4. The cache then returns the response, including an additional AGE header to inform

the client of the age of the representation.
5. Client A receives the representation and stores the ETag and Expires information.

Fifteen minutes later, Client B makes a request to the same resource, as shown in
Figure D-2.

Figure D-2. Client B does an initial GET

1. The cache receives the request and checks whether it has a copy of the representa‐
tion.

2. It sees from the matching on the URI and Accept that the representation is there
and it is still fresh (based on the expiration), so it returns it immediately with the
updated age.

3. Client B receives the representation and stores the ETag and Expires information.

An hour later, Client A does a conditional GET request back to the same resource, in‐
cluding the If-None-Match header, as shown in Figure D-3.

474 | Appendix D: Caching in Action



Figure D-3. Client A does a conditional GET

1. The cache receives the request and checks whether it has a copy of the representa‐
tion. It finds the representation and sees that it is no longer fresh. It then forwards
on the conditional GET request to the origin server to see if the copy it has is still
valid.

2. The origin server receives the request and determines that the ETAG is still valid. It
returns a 304 Not Modified with a new max-age.

3. The cache receives the request and returns the 304 to the client, along with an
updated age calculation.

Time passes, and Client B does a conditional PUT against the contact resource, updating
its state as shown in Figure D-4.
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Figure D-4. Client B does a conditional PUT

1. The cache receives the request and seeing that it is a PUT, checks its cache to see if
a copy exists for that resource, and if the ETag matches. Finding the copy, it inva‐
lidates the ETag for future requests. It then forwards on the request verbatim to the
origin server.

2. The server applies the update and generates a new response with an updated ETag.
3. The cache receives the response and caches it. It then returns the response to Client

B.

Client A comes along 10 minutes later and tries to also do a conditional PUT on the same
resource as shown in Figure D-5.
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Figure D-5. Client B does a conditional PUT

1. The cache receives its request and looks in its cache. It sees that it does not have a
match on the ETag, as it was previously updated.

2. It returns a 409 Conflict to the client, informing it that the ETag it has is no longer
valid.
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APPENDIX E

Authentication Workflows

The client-to-origin workflow involves a client authenticating to an origin server, as
shown in Figure E-1.

Figure E-1. Client authenticates with origin

The client attempts to access a protected resource from an origin server. The server,
seeing that the resource is protected, sends back a challenge to the client via a 401
Unauthorized response. The response contains a WWW-Authenticate header (see
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Table B-3) that contains one or more challenges that the client must respond to in order
to access the resource.

The client then sends back a request to the resource providing an Authorization header
with the requested credentials.

In the client-to-proxy workflow, a client attempts to access a resource via a secure proxy
that it must authenticate against. This is shown in Figure E-2.

Figure E-2. Client authenticates with proxy

The client attempts to access a protected resource via an authenticated proxy. The proxy,
seeing the request, sends back a challenge to the client via a 407 Proxy Authentication
Required response. The response contains a Proxy-Authenticate header (see
Table B-3) that contains one or more challenges for accessing the proxy itself. The client
then sends back the request, including the Proxy-Authorization header with the re‐
quested credentials. If, after authenticating with the proxy, the resource the user is at‐
tempting to access is protected, origin server authentication will also kick in. Figure E-3
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illustrates this, showing the origin server responding with a challenge after proxy au‐
thentication is complete.

Figure E-3. Client authenticates with proxy
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APPENDIX F

Media Type Specification
for application/issue+json

During the lifecycle of many complex engineering projects and the subsequent main‐
tenance of those products, we need to track the discovery and resolution of issues related
to those projects. This media type specification describes a document format that has a
very low barrier of entry for interoperability. The current specification is a minimal
definition with the expectation that additional capabilities will be added over time.

Notational Conventions
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in
RFC 2119.

Issue Documents
The Issue document, shown in Example F-1, uses the format described in RFC 4627 and
has the media type application/issue+json.

Example F-1. Minimal Issue document
{
        "title" : "This is a very simple issue"
}

Issue documents may contain the properties listed in Table F-1.

Table F-1. Semantics of properties
Property name Description

id A unique numeric identifier for the issue
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Property name Description

title A short textual summary of the issue (required)

description A detailed description of the issue

status A textual representation of the issue state containing one of the following values: open, closed.

issue+json also supports hypermedia using links that conform to the semantics of a
link, as described by RFC 5988. Links are defined by a set of objects within an array
named links.

Security Considerations
issue+json has some security issues common to all JSON content types. See RFC 4627
Section #6 for additional information. issue+json does not provide executable content.
Information contained in issue+json documents does not require privacy or integrity
services.

Interoperability Considerations
Unrecognized document content should be ignored and should not invalidate the
document.

IANA Considerations
This specification defines a new Internet media type (RFC 6838):

Type name: application
Subtype name: issue+json
Required parameters: None
Optional parameters: None; unrecognised parameters should be ignored
Encoding considerations: Same as [RFC4627]
Security considerations: see [this document]
Interoperability considerations: None.
Published specification: [this document]
Applications that use this media type: HTTP
Additional information:
  Magic number(s): n/a
  File extension(s): n/a
  Macintosh file type code(s): n/a
Person & email address to contact for further information:
    Darrel Miller <darrel@tavis.ca>
Intended usage: COMMON
Restrictions on usage: None.
Author: Darrel Miller <darrel@tavis.ca>
Change controller: IESG
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APPENDIX G

Public-Key Cryptography and Certificates

The introduction in 1976 of public-key cryptography by Whitfield Diffie and Martin
Hellman represented a major breakthrough in the design of large-scale, secure com‐
munication systems. The main idea behind their proposal is the generation and usage
of one or more key pairs by each entity, each composed of a private key and a public
key. The private keys must remain confidential and never have to be sent to other parties.
On the other hand, the public keys can be openly distributed without any confidentiality
requirements. These distributed public keys can then be used by third parties to:

• Send encrypted messages that can be decrypted only by the private key holder.
• Validate signatures that can only have been produced by the private key holder.

Public-key cryptography is also called asymmetric cryptography since its mechanisms
use two keys with different confidentiality requirements and different purposes:

• Private keys must remain confidential and are used to decrypt messages or to pro‐
duce digital signatures.

• Public keys can be openly distributed without any confidentiality requirements and
are used to encrypt messages or to validate signatures.

This contrasts with classical cryptography, also called symmetric cryptography, where
the same key, which must remain secret, is used for all operations (e.g., encrypt and
decrypt). Since the currently known asymmetric mechanisms have lower performance
than their symmetric counterparts, it is common to use hybrid techniques. For instance,
in TLS the asymmetric mechanism is used by the handshake protocol to establish a set
of confidential symmetric session keys, which are then used by the record protocol to
protect the bulk of the exchanged messages using a symmetric mechanism.

However, public-key cryptography introduces a new problem: public key authentica‐
tion. Even if public keys can be openly distributed, the receiving parties must have some
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secure way of knowing to whom they belong (i.e., who is the holder of the associated
private keys). Failure to correctly authenticate public keys makes them vulnerable to
man-in-the-middle (MITM) attacks, where an attacker replaces an entity public key with
its own. This allows the attacker to decrypt every message sent to that entity, since it is
in possession of the private key associated with the used public key.

A common way of authenticating public keys is by using public key certificates, which
are statements binding a public key to a subject, issued and signed by certification au‐
thorities (CA). These CAs are third parties on which a set of entities recognizes authority
and competence to verify this binding; that is, they check whether the holder of the
private key associated with a public key is also the owner of a name (e.g., DNS name).

To make things a little more concrete, let’s consider the example where a client performs
an HTTP request to the resource identified by https://webapi‐
book.blob.core.windows.net/. Since the URI has the https scheme, the HTTP request
message must be sent on a TLS- or SSL-protected connection. The secure connection
is established by the handshake protocol, which starts with the client sending a client
hello message to the server, including the client-supported cryptographic mechanisms.
The server responds with a server hello message with the chosen cryptographic
mechanisms and also with a certificate message containing the server’s certificate,
represented in Figure G-1.

This certificate follows the X.509 specification and is composed of several fields, such
as:

• The public key field, containing the server’s public key
• The subject field with the server’s name, which in this case is the *.blob.core.win
dows.net wildcard

• The issuer field containing the issuing entities’ name (the CA name), which is Mi‐
crosoft Secure Server Authority

The certificate also contains a signature produced by its issuer, so that it can be stored
and distributed via unsafe channels.
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Figure G-1. The *.blob.core.windows.net certificate

Upon receiving this certificate, the client can then use the contained public key to en‐
crypt a secret random seed value and send it to the server. This random seed is a secret
value that will be used by both the client and the server to deterministically derive the
set of session keys used to protect the exchanged byte stream. However, first the client
must ensure that (among other things):

• The certificate’s subject matches the https URI hostname.
• The certificate was not tampered with while in transit from the server to the client

(the handshake protocol is done over an unprotected connection).
• The issuing CA (Microsoft Secure Server Authority, in the previous example) is

trusted, in this context, to perform the binding between public keys and entity
names.
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The last verification is usually accomplished through a comparison of the certificate
issuer’s field against a trust store containing the trusted issuer’s names and their public
keys. The second task involves validating the certificate’s signature using the issuer’s
public key, also present in this store.

Trust stores are typically composed of self-issued certificates, each one holding a trusted
CA name and its public key. These self-issued certificates are created by CAs and dis‐
tributed out-of-band, via an authenticated mechanism. The decision to add a self-issued
certificate to this trust store means that the consuming entity:

• Has decided to trust the CA identified in the subject’s field—that is, assumes that
every certificate issued by the CA will contain a true public key binding

• Has checked that the contained public key does indeed belong to the CA

We stress this last requirement, since a self-signed certificate is not sufficient to bind a
public key to a name: this verification must be done by alternative means.

Figure G-2 represents an example for the model we just described.

Figure G-2. Certificate issued directly by a trusted CA

In the figure:

• CA0 issues the CS certificate after checking that the entity running the server is the
holder of the private key associated with server-key and also the legal owner of
the example.net domain name.
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• The client trusts CA0 for certificate purposes and so installs the CA0 self-issued
certificate in its trust store, after checking the correctness of the certificate infor‐
mation, namely its public key.

• During the TLS handshake protocol, the client receives the CS certificate and val‐
idates it by checking that (1) it was issued by a trusted CA and (2) its signature is
successfully validated through the CA’s public key. After this, the client uses server-
key to encrypt a secret seed that can be decrypted only by the example.net name
(according to CA0).

Certificate issuance by a CA should be preceded by a secure verification of the certified
information, particularly the binding of the public key to a name. Typically, CAs describe
this secure verification procedures in a document called Certification Practice State‐
ments. Depending on the name scope (DNS name, email, citizen’s identifier), the veri‐
fication can be expensive (e.g., verifying official records to ensure that an entity is the
owner of a registered name) or difficult to perform (the CA does not have any relation
to the naming authority). Hence, CAs can delegate their certification capability to other
CAs, called intermediate CAs or subordinate CAs. They do so by issuing a certificate,
where the issuer is the directly trusted CA and the subject is the intermediate CA. This
certificate serves two purposes: in addition to binding the intermediate CA name to its
public key, it also states that a subset of the issuer’s certification capabilities are delegated
to the intermediate CA.
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Figure G-3. Intermediate certification authorities and certification paths

Figure G-3 shows this extended model, where:

• CA0, usually called the root CA because it is directly trusted by the client, delegates
its certification capability to CA1 by issuing the intermediate C1 certificate.

• It is CA1, not CA0, that checks if the entity running the server is the holder of the
private key associated with server-key and also the legal owner of the exam‐
ple.net domain name.

In this model, the server certificate validation requires building a certificate chain—
composed of all the certificates from the directly trusted C0 certificate (present in the
trust store)—to the server’s certificate, via the intermediate certificate C1.

Returning to our concrete scenario, Figure G-4 shows the *.blob.core.windows.net cer‐
tification path, composed of two intermediate CAs. Only the root CA (GTE CyberTrust
Global Root) is directly trusted by the client. However, this CA has delegated its certif‐
ication authority to Microsoft Internet Authority, which in turn redelegated it to Mi‐
crosoft Secure Server Authority. It is this last CA that issues the server certificate.
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Figure G-4. The server’s certificate path

On Windows systems, certificates are managed via stores, such as the ones represented
in Figure G-5. These stores are grouped by store location (current user, local comput‐
er) and have specific semantics. For instance:

• The Personal store contains the certificates for which the private key associated with
the public key is also stored.

• The Trusted Root Certification Authorities store contains the trusted certificates that
can be used as roots for the certification paths.

• The Intermediate Certification Authorities store contains CA certificates that are
not directly trusted but that can be used to build a certification path.
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Figure G-5. Windows certificate stores

When the Windows certificate management system has to validate a certificate, it con‐
siders a certification path valid only if the root is in the Trusted Root Certification
Authorities store. You must take great care before adding certificates to this store, since
its contents define who is allowed to issue valid certificates. As an example, by adding
a certificate to this trust store, the Fiddler tool is able to dynamically issue valid certif‐
icates for any server name. This allows Fiddler to intercept the HTTPS traffic by im‐
personating the remote server. This is an example of a MITM attack, used in this case
for benign development and debugging purposes.

Revocation
The validity of the certificate information can change over time. Namely, if an attacker
is able to obtain an entity’s private key, then the associated public key should not be used
anymore.

One way of accomplishing this is by using certificate revocation lists (CRL) containing
invalidated (revoked) certificates. For instance, in the previous example the
*.blob.core.windows.net certificate contains a CRL distribution point field with a CRL
URI (http://mscrl.microsoft.com/pki/mscorp/crl/Microsoft%20Secure%20Server
%20Authority(8).crl). When validating the certificate, this URI can be used to retrieve
the CRL and check if the certificate hasn’t been revoked.

An alternative method is to check the certificate’s current validity state by using the
Online Certificate Status Protocol (OCSP), where the client directly asks the CA for the
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1. Available in the .NET Framework tools.

current certificate state. The validation of a certification should include one of these
forms of revocation checking.

To know more about the use of X.509 certificates in Internet scenarios, including the
certification path construction and validation details, we recommend the set of RFCs
issued by the PKIX IETF working group, namely RFC 5280.

Creating Test Keys and Certificates
When you are developing clients and servers that use the TLS protocol, it is useful to
have a set of keys and certificates for testing purposes. In the following paragraphs we
show how to create this infrastructure using a set of Windows command-line tools.
However, before we start, there is something we should emphasize: never use these keys
and certificates in a production scenario; they are only for testing purposes.

The first step is to create a root certification authority, using the makecert tool:1

makecert -r -n "CN=Demo Certification Authority;O=Web API Book" ^
 -sv webapibook-ca.pvk ^
 -len 2048 -e 01/01/2020 -cy authority webapibook-ca.cer

The -r option instructs makecert to generate a self-signed certificate—that is, a certif‐
icate signed with the private key associated with the contained public key. This certificate
will be used as the certification path root.

The certification authority will have the X.500 name CN=Demo Certification Author
ity;O=Web API Book, where CN and O are name attributes: CN stands for common
name and O stands for organization. The private key will be stored in the webapibook-
ca.pvk file, encrypted by a key derived from a given password. This private key will be
used to sign each issued certificate.

The second step is to generate an asymmetric key pair and certificate for a fictional
server named www.example.net. We also accomplish this via the makecert tool:

makecert.exe -iv webapibook-ca.pvk -ic webapibook-ca.cer -n "CN=www.example.net" ^
 -sv example.pvk -len 2048 -e 01/01/2020 ^
 -sky exchange example.cer -eku 1.3.6.1.5.5.7.3.1

pvk2pfx.exe -pvk example.pvk -spc example.cer -pfx example.pfx

This certificate is issued by the previously generated CA, so makecert requires both the
CA certificate (for naming) and the CA private key (for signing). The -eku
1.3.6.1.5.5.7.3.1 option adds an enhanced key usage extension to the generated cer‐
tificate, indicating that it can be used with TLS server authentication.
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The .pvk file contains the server’s private key and the .cer file contains its certificate,
including the public key. The last line in the previous example uses the pvk2pfx tool to
encapsulate both the private key and the certificate into a single .pfx (personal informa‐
tion exchange) file. This last file uses the PKCS#12 interoperability format for exchang‐
ing cryptographic material, such as private keys and certificates, and is the most com‐
monly used format in Windows for this purpose.

The final step is to generate client-side certificates for the two famous cryptography
fictional characters, Alice and Bob:

makecert.exe -iv webapibook-ca.pvk -ic webapibook-ca.cer ^
   -n "CN=Alice;O=Web API book fictional characters" ^
   -sv alice.pvk -len 2048 -e 01/01/2020 -sky exchange ^
   alice.cer -eku 1.3.6.1.5.5.7.3.2
pvk2pfx.exe -pvk alice.pvk -spc alice.cer -pfx alice.pfx

makecert.exe -iv webapibook-ca.pvk -ic webapibook-ca.cer ^
   -n "CN=Bob;O=Web API book fictional characters" ^
   -pe -sv bob.pvk -len 2048 -e 01/01/2020 -sky exchange ^
   bob.cer -eku 1.3.6.1.5.5.7.3.2
pvk2pfx.exe -pvk bob.pvk -spc bob.cer -pfx bob.pfx

This process is similar to the one we used to generate the host cryptographic material,
with only one exception: the generated certificates will have the 1.3.6.1.5.5.7.3.2
extension, which indicates that they can be used for TLS client-side authentication.

After completing this process, we should have generated two types of files. The
webapibook-ca.cer file contains the CA certificate and should be used by every party
that chooses to trust the certifications performed by this entity. On Windows, this trust
decision results in adding the certificate to the Trusted Root Certificate Authorities user’s
store. The .pfx files contain both certificates and private keys for each of the parties
(www.example.net, Alice and Bob) and should be installed in the Personal certificate
store of each party.
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We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.
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Colophon
The animals on the cover of Designing Evolvable Web APIs with ASP.NET are warty
newts (Triturus cristatus). Also known as northern or great crested newts, these am‐
phibians are found all over northern Europe, from the UK to just past the Black Sea. It
is the biggest and least common of the three newts that live in the British Isles, and is
protected there by the Biodiversity Action Plan, which seeks to catalog and form con‐
servation plans for threatened animals.

Warty newts normally spend most of their lives on land, but do return to ponds and
pools to breed. The larvae, or “efts,” hatch after about three weeks and live underwater
for a time. They undergo metamorphosis at four months old, at which point they become
air-breathing juveniles who leave the ponds for land. There, they feed on worms, insects,
and insect larvae. Adult newts may even hunt in ponds for other newts, tadpoles, young
frogs, insects, or water snails.



Because they are relatively defenseless, warty newts prefer to live in terrestrial habitats
that are covered, such as scrub, grass, and dense woodland. Females are larger than
males and can measure up to 15cm long. Both genders display the same types of color
patterns: dark gray to black backs and flanks, and yellow or orange undersides that are
covered with black blotches. During the breeding season, males can be distinguished
from females by their jagged crests, which runs along their backs.

From October to March, these newts hibernate under logs and stones in the mud at the
bottom of their breeding ponds. Normally, newts return to the same breeding site each
year, and generally do not stray more than half a mile from the place where they were
born. Although it is possible for some warty newts to live as long as 30 years, most live
for about 10 in the wild.

The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion
Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.
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